Nature and morphology of fumed oxides and features of interfacial phenomena

•Effects of oxide surface structure on interfacial behavior of nonpolar and polar adsorbates.•Confined space effects on freezing and melting temperatures of bound adsorbates.•Equilibrium adsorption and evaporation rate vs. structure of nanooxide adsorbents. Individual and complex fumed nanooxides we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2016-03, Vol.366, p.410-423
Hauptverfasser: Gun’ko, V.M., Zarko, V.I., Goncharuk, O.V., Matkovsky, A.K., Remez, O.S., Skubiszewska-Zięba, J., Wojcik, G., Walusiak, B., Blitz, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue
container_start_page 410
container_title Applied surface science
container_volume 366
creator Gun’ko, V.M.
Zarko, V.I.
Goncharuk, O.V.
Matkovsky, A.K.
Remez, O.S.
Skubiszewska-Zięba, J.
Wojcik, G.
Walusiak, B.
Blitz, J.P.
description •Effects of oxide surface structure on interfacial behavior of nonpolar and polar adsorbates.•Confined space effects on freezing and melting temperatures of bound adsorbates.•Equilibrium adsorption and evaporation rate vs. structure of nanooxide adsorbents. Individual and complex fumed nanooxides were studied using high-resolution transmission electron microscopy, X-ray diffraction, ultraviolet-visible (UV–vis) spectroscopy, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, adsorption, desorption (evaporation), and quantum chemical methods. For mixed nanooxides in contrast to simple and small nanoparticles of individual silica or titania, complex core–shell nanoparticles (50–200nm in size) with titania or alumina cores and silica or alumina shells can be destroyed under high-pressure cryogelation (HPCG), mechnochemical activation (MCA) that also affect the structure of aggregates of nanoparticles and agglomerates of aggregates becoming more compacted. This is accompanied by changes in color from white to beige of different tints and changes in the UV–vis spectra in the 300–600nm range, as well as changes in crystalline structure of alumina. Any treatment of ‘soft’ nanooxides affects the interfacial behavior of polar and nonpolar adsorbates. For some of them, the hysteresis loops become strongly open. Rearrangement of secondary particles affects the freezing-melting point depression. Clusterization of adsorbates bound in pores causes diminution of heat effects during phase transition (freezing, fusion). Freezing point depression and increasing melting point cause significant hysteresis freezing-melting effects for adsorbates bound to oxide nanoparticles. The study shows that complex nanooxides can be more sensitive to external actions than simple nanooxides such as silica.
doi_str_mv 10.1016/j.apsusc.2016.01.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793276066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016943321600088X</els_id><sourcerecordid>1793276066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-ef2684b863f1134167ad019104334739ec2b7650b9e15297a65d529331f2db033</originalsourceid><addsrcrecordid>eNp9kDtPwzAQxy0EEuXxDRgysiT47MRJFiRU8RIVLDBbjnOmrpI42Ami3x63ZWY6nf4P3f0IuQKaAQVxs8nUGOagMxa3jEJGBTsiC6hKnhZFlR-TRRTqNOecnZKzEDaUAovqgry8qmn2mKihTXrnx7Xr3Oc2cSYxc49t4n5si2EvG9xbw060w4TeKG1Vl4xrHFyPg7ogJ0Z1AS__5jn5eLh_Xz6lq7fH5-XdKtU5LaYUDRNV3lSCGwCegyhVS6EGGs_LS16jZk0pCtrUCAWrSyWKNk7OwbC2oZyfk-tD7-jd14xhkr0NGrtODejmIKGsOSsFFSJa84NVexeCRyNHb3vltxKo3LGTG3lgJ3fsJAUZ2cXY7SGG8Y1vi14GbXHQ2FqPepKts_8X_AISo3il</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793276066</pqid></control><display><type>article</type><title>Nature and morphology of fumed oxides and features of interfacial phenomena</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gun’ko, V.M. ; Zarko, V.I. ; Goncharuk, O.V. ; Matkovsky, A.K. ; Remez, O.S. ; Skubiszewska-Zięba, J. ; Wojcik, G. ; Walusiak, B. ; Blitz, J.P.</creator><creatorcontrib>Gun’ko, V.M. ; Zarko, V.I. ; Goncharuk, O.V. ; Matkovsky, A.K. ; Remez, O.S. ; Skubiszewska-Zięba, J. ; Wojcik, G. ; Walusiak, B. ; Blitz, J.P.</creatorcontrib><description>•Effects of oxide surface structure on interfacial behavior of nonpolar and polar adsorbates.•Confined space effects on freezing and melting temperatures of bound adsorbates.•Equilibrium adsorption and evaporation rate vs. structure of nanooxide adsorbents. Individual and complex fumed nanooxides were studied using high-resolution transmission electron microscopy, X-ray diffraction, ultraviolet-visible (UV–vis) spectroscopy, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, adsorption, desorption (evaporation), and quantum chemical methods. For mixed nanooxides in contrast to simple and small nanoparticles of individual silica or titania, complex core–shell nanoparticles (50–200nm in size) with titania or alumina cores and silica or alumina shells can be destroyed under high-pressure cryogelation (HPCG), mechnochemical activation (MCA) that also affect the structure of aggregates of nanoparticles and agglomerates of aggregates becoming more compacted. This is accompanied by changes in color from white to beige of different tints and changes in the UV–vis spectra in the 300–600nm range, as well as changes in crystalline structure of alumina. Any treatment of ‘soft’ nanooxides affects the interfacial behavior of polar and nonpolar adsorbates. For some of them, the hysteresis loops become strongly open. Rearrangement of secondary particles affects the freezing-melting point depression. Clusterization of adsorbates bound in pores causes diminution of heat effects during phase transition (freezing, fusion). Freezing point depression and increasing melting point cause significant hysteresis freezing-melting effects for adsorbates bound to oxide nanoparticles. The study shows that complex nanooxides can be more sensitive to external actions than simple nanooxides such as silica.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2016.01.062</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adsorbates ; Adsorption ; Aluminum oxide ; Evaporation ; High-pressure cryogelation ; Interfacial phenomena ; Mixed fumed oxides ; Nanoparticles ; Nanosilica ; Nanostructure ; Oxides ; Silicon dioxide ; Spectroscopy ; Titanium dioxide</subject><ispartof>Applied surface science, 2016-03, Vol.366, p.410-423</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-ef2684b863f1134167ad019104334739ec2b7650b9e15297a65d529331f2db033</citedby><cites>FETCH-LOGICAL-c405t-ef2684b863f1134167ad019104334739ec2b7650b9e15297a65d529331f2db033</cites><orcidid>0000-0001-6333-3441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2016.01.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Gun’ko, V.M.</creatorcontrib><creatorcontrib>Zarko, V.I.</creatorcontrib><creatorcontrib>Goncharuk, O.V.</creatorcontrib><creatorcontrib>Matkovsky, A.K.</creatorcontrib><creatorcontrib>Remez, O.S.</creatorcontrib><creatorcontrib>Skubiszewska-Zięba, J.</creatorcontrib><creatorcontrib>Wojcik, G.</creatorcontrib><creatorcontrib>Walusiak, B.</creatorcontrib><creatorcontrib>Blitz, J.P.</creatorcontrib><title>Nature and morphology of fumed oxides and features of interfacial phenomena</title><title>Applied surface science</title><description>•Effects of oxide surface structure on interfacial behavior of nonpolar and polar adsorbates.•Confined space effects on freezing and melting temperatures of bound adsorbates.•Equilibrium adsorption and evaporation rate vs. structure of nanooxide adsorbents. Individual and complex fumed nanooxides were studied using high-resolution transmission electron microscopy, X-ray diffraction, ultraviolet-visible (UV–vis) spectroscopy, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, adsorption, desorption (evaporation), and quantum chemical methods. For mixed nanooxides in contrast to simple and small nanoparticles of individual silica or titania, complex core–shell nanoparticles (50–200nm in size) with titania or alumina cores and silica or alumina shells can be destroyed under high-pressure cryogelation (HPCG), mechnochemical activation (MCA) that also affect the structure of aggregates of nanoparticles and agglomerates of aggregates becoming more compacted. This is accompanied by changes in color from white to beige of different tints and changes in the UV–vis spectra in the 300–600nm range, as well as changes in crystalline structure of alumina. Any treatment of ‘soft’ nanooxides affects the interfacial behavior of polar and nonpolar adsorbates. For some of them, the hysteresis loops become strongly open. Rearrangement of secondary particles affects the freezing-melting point depression. Clusterization of adsorbates bound in pores causes diminution of heat effects during phase transition (freezing, fusion). Freezing point depression and increasing melting point cause significant hysteresis freezing-melting effects for adsorbates bound to oxide nanoparticles. The study shows that complex nanooxides can be more sensitive to external actions than simple nanooxides such as silica.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Aluminum oxide</subject><subject>Evaporation</subject><subject>High-pressure cryogelation</subject><subject>Interfacial phenomena</subject><subject>Mixed fumed oxides</subject><subject>Nanoparticles</subject><subject>Nanosilica</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Titanium dioxide</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQxy0EEuXxDRgysiT47MRJFiRU8RIVLDBbjnOmrpI42Ami3x63ZWY6nf4P3f0IuQKaAQVxs8nUGOagMxa3jEJGBTsiC6hKnhZFlR-TRRTqNOecnZKzEDaUAovqgry8qmn2mKihTXrnx7Xr3Oc2cSYxc49t4n5si2EvG9xbw060w4TeKG1Vl4xrHFyPg7ogJ0Z1AS__5jn5eLh_Xz6lq7fH5-XdKtU5LaYUDRNV3lSCGwCegyhVS6EGGs_LS16jZk0pCtrUCAWrSyWKNk7OwbC2oZyfk-tD7-jd14xhkr0NGrtODejmIKGsOSsFFSJa84NVexeCRyNHb3vltxKo3LGTG3lgJ3fsJAUZ2cXY7SGG8Y1vi14GbXHQ2FqPepKts_8X_AISo3il</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Gun’ko, V.M.</creator><creator>Zarko, V.I.</creator><creator>Goncharuk, O.V.</creator><creator>Matkovsky, A.K.</creator><creator>Remez, O.S.</creator><creator>Skubiszewska-Zięba, J.</creator><creator>Wojcik, G.</creator><creator>Walusiak, B.</creator><creator>Blitz, J.P.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6333-3441</orcidid></search><sort><creationdate>20160315</creationdate><title>Nature and morphology of fumed oxides and features of interfacial phenomena</title><author>Gun’ko, V.M. ; Zarko, V.I. ; Goncharuk, O.V. ; Matkovsky, A.K. ; Remez, O.S. ; Skubiszewska-Zięba, J. ; Wojcik, G. ; Walusiak, B. ; Blitz, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-ef2684b863f1134167ad019104334739ec2b7650b9e15297a65d529331f2db033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Aluminum oxide</topic><topic>Evaporation</topic><topic>High-pressure cryogelation</topic><topic>Interfacial phenomena</topic><topic>Mixed fumed oxides</topic><topic>Nanoparticles</topic><topic>Nanosilica</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gun’ko, V.M.</creatorcontrib><creatorcontrib>Zarko, V.I.</creatorcontrib><creatorcontrib>Goncharuk, O.V.</creatorcontrib><creatorcontrib>Matkovsky, A.K.</creatorcontrib><creatorcontrib>Remez, O.S.</creatorcontrib><creatorcontrib>Skubiszewska-Zięba, J.</creatorcontrib><creatorcontrib>Wojcik, G.</creatorcontrib><creatorcontrib>Walusiak, B.</creatorcontrib><creatorcontrib>Blitz, J.P.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gun’ko, V.M.</au><au>Zarko, V.I.</au><au>Goncharuk, O.V.</au><au>Matkovsky, A.K.</au><au>Remez, O.S.</au><au>Skubiszewska-Zięba, J.</au><au>Wojcik, G.</au><au>Walusiak, B.</au><au>Blitz, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nature and morphology of fumed oxides and features of interfacial phenomena</atitle><jtitle>Applied surface science</jtitle><date>2016-03-15</date><risdate>2016</risdate><volume>366</volume><spage>410</spage><epage>423</epage><pages>410-423</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•Effects of oxide surface structure on interfacial behavior of nonpolar and polar adsorbates.•Confined space effects on freezing and melting temperatures of bound adsorbates.•Equilibrium adsorption and evaporation rate vs. structure of nanooxide adsorbents. Individual and complex fumed nanooxides were studied using high-resolution transmission electron microscopy, X-ray diffraction, ultraviolet-visible (UV–vis) spectroscopy, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, adsorption, desorption (evaporation), and quantum chemical methods. For mixed nanooxides in contrast to simple and small nanoparticles of individual silica or titania, complex core–shell nanoparticles (50–200nm in size) with titania or alumina cores and silica or alumina shells can be destroyed under high-pressure cryogelation (HPCG), mechnochemical activation (MCA) that also affect the structure of aggregates of nanoparticles and agglomerates of aggregates becoming more compacted. This is accompanied by changes in color from white to beige of different tints and changes in the UV–vis spectra in the 300–600nm range, as well as changes in crystalline structure of alumina. Any treatment of ‘soft’ nanooxides affects the interfacial behavior of polar and nonpolar adsorbates. For some of them, the hysteresis loops become strongly open. Rearrangement of secondary particles affects the freezing-melting point depression. Clusterization of adsorbates bound in pores causes diminution of heat effects during phase transition (freezing, fusion). Freezing point depression and increasing melting point cause significant hysteresis freezing-melting effects for adsorbates bound to oxide nanoparticles. The study shows that complex nanooxides can be more sensitive to external actions than simple nanooxides such as silica.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2016.01.062</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6333-3441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2016-03, Vol.366, p.410-423
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1793276066
source Access via ScienceDirect (Elsevier)
subjects Adsorbates
Adsorption
Aluminum oxide
Evaporation
High-pressure cryogelation
Interfacial phenomena
Mixed fumed oxides
Nanoparticles
Nanosilica
Nanostructure
Oxides
Silicon dioxide
Spectroscopy
Titanium dioxide
title Nature and morphology of fumed oxides and features of interfacial phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nature%20and%20morphology%20of%20fumed%20oxides%20and%20features%20of%20interfacial%20phenomena&rft.jtitle=Applied%20surface%20science&rft.au=Gun%E2%80%99ko,%20V.M.&rft.date=2016-03-15&rft.volume=366&rft.spage=410&rft.epage=423&rft.pages=410-423&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2016.01.062&rft_dat=%3Cproquest_cross%3E1793276066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793276066&rft_id=info:pmid/&rft_els_id=S016943321600088X&rfr_iscdi=true