Parallel exponential Rosenbrock methods
Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the exis...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2016-03, Vol.71 (5), p.1137-1150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 5 |
container_start_page | 1137 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 71 |
creator | Luan, Vu Thai Ostermann, Alexander |
description | Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones. |
doi_str_mv | 10.1016/j.camwa.2016.01.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793276039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122116300165</els_id><sourcerecordid>1793276039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWy6g03CjJ3EzoIFqnhJlUAI1pbtTEWKExc75fH3pJQ1q6uR7hnpHsZOEXIErC5WuTPdp8n5eOSAOXDYYxNUUmSyqtQ-m4CqVYac4yE7SmkFAIXgMGFnjyYa78nP6GsdeuqH1vjZU0jU2xjc26yj4TU06ZgdLI1PdPKXU_Zyc_08v8sWD7f386tF5soah0xKYQCNIc6Lgsu6KJVCXiiLDYpSOQWlsdZSVWHtGuewAGORrHMVLbk1YsrOd3_XMbxvKA26a5Mj701PYZM0ylpwWYGox6rYVV0MKUVa6nVsOxO_NYLeatEr_atFb7VoQD1qGanLHUXjio-Wok6upd5R00Zyg25C-y__A9oUa5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793276039</pqid></control><display><type>article</type><title>Parallel exponential Rosenbrock methods</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Luan, Vu Thai ; Ostermann, Alexander</creator><creatorcontrib>Luan, Vu Thai ; Ostermann, Alexander</creatorcontrib><description>Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.01.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accuracy ; Computation ; Computer simulation ; Construction ; Differential equations ; Exponential Rosenbrock methods ; Integrators ; Mathematical models ; Multiprocessors ; Parallel computers ; Parallel exponential Rosenbrock integrators ; Parallel implementation ; Speedup factor ; Stiff order conditions</subject><ispartof>Computers & mathematics with applications (1987), 2016-03, Vol.71 (5), p.1137-1150</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</citedby><cites>FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</cites><orcidid>0000-0003-0194-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2016.01.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Luan, Vu Thai</creatorcontrib><creatorcontrib>Ostermann, Alexander</creatorcontrib><title>Parallel exponential Rosenbrock methods</title><title>Computers & mathematics with applications (1987)</title><description>Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.</description><subject>Accuracy</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Differential equations</subject><subject>Exponential Rosenbrock methods</subject><subject>Integrators</subject><subject>Mathematical models</subject><subject>Multiprocessors</subject><subject>Parallel computers</subject><subject>Parallel exponential Rosenbrock integrators</subject><subject>Parallel implementation</subject><subject>Speedup factor</subject><subject>Stiff order conditions</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWy6g03CjJ3EzoIFqnhJlUAI1pbtTEWKExc75fH3pJQ1q6uR7hnpHsZOEXIErC5WuTPdp8n5eOSAOXDYYxNUUmSyqtQ-m4CqVYac4yE7SmkFAIXgMGFnjyYa78nP6GsdeuqH1vjZU0jU2xjc26yj4TU06ZgdLI1PdPKXU_Zyc_08v8sWD7f386tF5soah0xKYQCNIc6Lgsu6KJVCXiiLDYpSOQWlsdZSVWHtGuewAGORrHMVLbk1YsrOd3_XMbxvKA26a5Mj701PYZM0ylpwWYGox6rYVV0MKUVa6nVsOxO_NYLeatEr_atFb7VoQD1qGanLHUXjio-Wok6upd5R00Zyg25C-y__A9oUa5k</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Luan, Vu Thai</creator><creator>Ostermann, Alexander</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></search><sort><creationdate>20160301</creationdate><title>Parallel exponential Rosenbrock methods</title><author>Luan, Vu Thai ; Ostermann, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Differential equations</topic><topic>Exponential Rosenbrock methods</topic><topic>Integrators</topic><topic>Mathematical models</topic><topic>Multiprocessors</topic><topic>Parallel computers</topic><topic>Parallel exponential Rosenbrock integrators</topic><topic>Parallel implementation</topic><topic>Speedup factor</topic><topic>Stiff order conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luan, Vu Thai</creatorcontrib><creatorcontrib>Ostermann, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luan, Vu Thai</au><au>Ostermann, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel exponential Rosenbrock methods</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>71</volume><issue>5</issue><spage>1137</spage><epage>1150</epage><pages>1137-1150</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.01.020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2016-03, Vol.71 (5), p.1137-1150 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793276039 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Accuracy Computation Computer simulation Construction Differential equations Exponential Rosenbrock methods Integrators Mathematical models Multiprocessors Parallel computers Parallel exponential Rosenbrock integrators Parallel implementation Speedup factor Stiff order conditions |
title | Parallel exponential Rosenbrock methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20exponential%20Rosenbrock%20methods&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Luan,%20Vu%20Thai&rft.date=2016-03-01&rft.volume=71&rft.issue=5&rft.spage=1137&rft.epage=1150&rft.pages=1137-1150&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.01.020&rft_dat=%3Cproquest_cross%3E1793276039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793276039&rft_id=info:pmid/&rft_els_id=S0898122116300165&rfr_iscdi=true |