Parallel exponential Rosenbrock methods

Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2016-03, Vol.71 (5), p.1137-1150
Hauptverfasser: Luan, Vu Thai, Ostermann, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 5
container_start_page 1137
container_title Computers & mathematics with applications (1987)
container_volume 71
creator Luan, Vu Thai
Ostermann, Alexander
description Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.
doi_str_mv 10.1016/j.camwa.2016.01.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793276039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122116300165</els_id><sourcerecordid>1793276039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWy6g03CjJ3EzoIFqnhJlUAI1pbtTEWKExc75fH3pJQ1q6uR7hnpHsZOEXIErC5WuTPdp8n5eOSAOXDYYxNUUmSyqtQ-m4CqVYac4yE7SmkFAIXgMGFnjyYa78nP6GsdeuqH1vjZU0jU2xjc26yj4TU06ZgdLI1PdPKXU_Zyc_08v8sWD7f386tF5soah0xKYQCNIc6Lgsu6KJVCXiiLDYpSOQWlsdZSVWHtGuewAGORrHMVLbk1YsrOd3_XMbxvKA26a5Mj701PYZM0ylpwWYGox6rYVV0MKUVa6nVsOxO_NYLeatEr_atFb7VoQD1qGanLHUXjio-Wok6upd5R00Zyg25C-y__A9oUa5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793276039</pqid></control><display><type>article</type><title>Parallel exponential Rosenbrock methods</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Luan, Vu Thai ; Ostermann, Alexander</creator><creatorcontrib>Luan, Vu Thai ; Ostermann, Alexander</creatorcontrib><description>Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.01.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accuracy ; Computation ; Computer simulation ; Construction ; Differential equations ; Exponential Rosenbrock methods ; Integrators ; Mathematical models ; Multiprocessors ; Parallel computers ; Parallel exponential Rosenbrock integrators ; Parallel implementation ; Speedup factor ; Stiff order conditions</subject><ispartof>Computers &amp; mathematics with applications (1987), 2016-03, Vol.71 (5), p.1137-1150</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</citedby><cites>FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</cites><orcidid>0000-0003-0194-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2016.01.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Luan, Vu Thai</creatorcontrib><creatorcontrib>Ostermann, Alexander</creatorcontrib><title>Parallel exponential Rosenbrock methods</title><title>Computers &amp; mathematics with applications (1987)</title><description>Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.</description><subject>Accuracy</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Differential equations</subject><subject>Exponential Rosenbrock methods</subject><subject>Integrators</subject><subject>Mathematical models</subject><subject>Multiprocessors</subject><subject>Parallel computers</subject><subject>Parallel exponential Rosenbrock integrators</subject><subject>Parallel implementation</subject><subject>Speedup factor</subject><subject>Stiff order conditions</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWy6g03CjJ3EzoIFqnhJlUAI1pbtTEWKExc75fH3pJQ1q6uR7hnpHsZOEXIErC5WuTPdp8n5eOSAOXDYYxNUUmSyqtQ-m4CqVYac4yE7SmkFAIXgMGFnjyYa78nP6GsdeuqH1vjZU0jU2xjc26yj4TU06ZgdLI1PdPKXU_Zyc_08v8sWD7f386tF5soah0xKYQCNIc6Lgsu6KJVCXiiLDYpSOQWlsdZSVWHtGuewAGORrHMVLbk1YsrOd3_XMbxvKA26a5Mj701PYZM0ylpwWYGox6rYVV0MKUVa6nVsOxO_NYLeatEr_atFb7VoQD1qGanLHUXjio-Wok6upd5R00Zyg25C-y__A9oUa5k</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Luan, Vu Thai</creator><creator>Ostermann, Alexander</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></search><sort><creationdate>20160301</creationdate><title>Parallel exponential Rosenbrock methods</title><author>Luan, Vu Thai ; Ostermann, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-773a01aae224427945881248b1d1358c805abbbe6619cdcc140ab1ebcc6ef2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Differential equations</topic><topic>Exponential Rosenbrock methods</topic><topic>Integrators</topic><topic>Mathematical models</topic><topic>Multiprocessors</topic><topic>Parallel computers</topic><topic>Parallel exponential Rosenbrock integrators</topic><topic>Parallel implementation</topic><topic>Speedup factor</topic><topic>Stiff order conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luan, Vu Thai</creatorcontrib><creatorcontrib>Ostermann, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luan, Vu Thai</au><au>Ostermann, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel exponential Rosenbrock methods</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>71</volume><issue>5</issue><spage>1137</spage><epage>1150</epage><pages>1137-1150</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Exponential Rosenbrock integrators were shown to be very efficient in solving large systems of stiff ordinary differential equations. So far, such exponential methods have been derived up to order 5. The aim of this paper is to construct new integrators of orders 4, 5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel exponential Rosenbrock integrators, can be implemented on a multi-processor system or parallel computers. The new schemes of orders 4 and 5 require the same number of stages as the old schemes of the same orders of accuracy. However, while the parallel integrator of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders 5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant improvement over the old schemes in terms of computational time when implemented in parallel. The numerical experiments show the efficiency of the new integrators as well as the comparative performance with the old ones.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.01.020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2016-03, Vol.71 (5), p.1137-1150
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1793276039
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Accuracy
Computation
Computer simulation
Construction
Differential equations
Exponential Rosenbrock methods
Integrators
Mathematical models
Multiprocessors
Parallel computers
Parallel exponential Rosenbrock integrators
Parallel implementation
Speedup factor
Stiff order conditions
title Parallel exponential Rosenbrock methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20exponential%20Rosenbrock%20methods&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Luan,%20Vu%20Thai&rft.date=2016-03-01&rft.volume=71&rft.issue=5&rft.spage=1137&rft.epage=1150&rft.pages=1137-1150&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.01.020&rft_dat=%3Cproquest_cross%3E1793276039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793276039&rft_id=info:pmid/&rft_els_id=S0898122116300165&rfr_iscdi=true