Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory

In this study, free vibration behavior of piezoelectric Timoshenko nanobeams in the vicinity of postbuckling domain is investigated based on the nonlocal elasticity theory. It is assumed that the piezoelectric nanobeam is subjected to an axial compression force, an applied voltage and a uniform temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2016-03, Vol.89, p.316-327
Hauptverfasser: Ansari, R., Faraji Oskouie, M., Gholami, R., Sadeghi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue
container_start_page 316
container_title Composites. Part B, Engineering
container_volume 89
creator Ansari, R.
Faraji Oskouie, M.
Gholami, R.
Sadeghi, F.
description In this study, free vibration behavior of piezoelectric Timoshenko nanobeams in the vicinity of postbuckling domain is investigated based on the nonlocal elasticity theory. It is assumed that the piezoelectric nanobeam is subjected to an axial compression force, an applied voltage and a uniform temperature change. Using Hamilton principle, the governing differential equations of motion incorporating von Kármán geometric nonlinearity and the corresponding boundary conditions are derived and then discretized on the basis of generalized differential quadrature (GDQ) scheme. After solving the parameterized equations using Newton–Raphson technique, a dynamic analysis based on a numerical solution strategy is performed to predict the natural frequencies of piezoelectric nanobeams associated with both prebuckling and postbuckling domains. Numerical results are presented to study the effects of nonlocal parameter, temperature rise and external electric voltage on the size-dependent vibration behavior of piezoelectric nanobeams with clamped–clamped (C–C), clamped-simply supported (C-SS) and simply supported-simply supported (SS-SS) end conditions. It is demonstrated that these parameters may shift the postbuckling domain to higher or lower applied axial loads.
doi_str_mv 10.1016/j.compositesb.2015.12.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793270832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836815007672</els_id><sourcerecordid>1793270832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-1101abe0982ae6bc8a53be0695397fbc58b0cff0c2f894efbdd35fb6870756183</originalsourceid><addsrcrecordid>eNqNkEtrGzEUhYeQQpO0_2Gy62Ymelgz0jKYNgkEunHXQtJcYTkzuo4kB1zIf4-Ms-iyq_vgnHO5X9PcUtJTQoe7Xe9w2WMOBbLtGaGip6wnTF00V1SOqqNkUJe150J1kg_ya3Od844QshKcXTXvmy2kBTuYwZWE3QJua2JwZm7fgk2mBIwt-raeKPbgXmaY2n2Av3g2BNduwoJ5C_EF22giWjBLbq3JVVitZQttxDjjKRFmk0twoRxPe0zHb80Xb-YM3z_rTfPn18_N-rF7_v3wtL5_7hwXq9LR-qqxQJRkBgbrpBG8joMSXI3eOiEtcd4Tx7xUK_B2mrjwdpAjGcVAJb9pfpxz9wlfD5CLXkJ2MM8mAh6ypqPibCSSsypVZ6lLmHMCr_cpLCYdNSX6hFzv9D_I9Qm5pkxX5NW7Pnuh_vIWIOnsAkQHU0iVlp4w_EfKB7lelPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793270832</pqid></control><display><type>article</type><title>Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ansari, R. ; Faraji Oskouie, M. ; Gholami, R. ; Sadeghi, F.</creator><creatorcontrib>Ansari, R. ; Faraji Oskouie, M. ; Gholami, R. ; Sadeghi, F.</creatorcontrib><description>In this study, free vibration behavior of piezoelectric Timoshenko nanobeams in the vicinity of postbuckling domain is investigated based on the nonlocal elasticity theory. It is assumed that the piezoelectric nanobeam is subjected to an axial compression force, an applied voltage and a uniform temperature change. Using Hamilton principle, the governing differential equations of motion incorporating von Kármán geometric nonlinearity and the corresponding boundary conditions are derived and then discretized on the basis of generalized differential quadrature (GDQ) scheme. After solving the parameterized equations using Newton–Raphson technique, a dynamic analysis based on a numerical solution strategy is performed to predict the natural frequencies of piezoelectric nanobeams associated with both prebuckling and postbuckling domains. Numerical results are presented to study the effects of nonlocal parameter, temperature rise and external electric voltage on the size-dependent vibration behavior of piezoelectric nanobeams with clamped–clamped (C–C), clamped-simply supported (C-SS) and simply supported-simply supported (SS-SS) end conditions. It is demonstrated that these parameters may shift the postbuckling domain to higher or lower applied axial loads.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2015.12.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Nano-structures ; B. Buckling ; B. Vibration ; C. Numerical analysis ; Differential equations ; Electric potential ; Mathematical models ; Nanostructure ; Nonlocal elasticity ; Piezoelectricity ; Postbuckling ; Vibration</subject><ispartof>Composites. Part B, Engineering, 2016-03, Vol.89, p.316-327</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-1101abe0982ae6bc8a53be0695397fbc58b0cff0c2f894efbdd35fb6870756183</citedby><cites>FETCH-LOGICAL-c354t-1101abe0982ae6bc8a53be0695397fbc58b0cff0c2f894efbdd35fb6870756183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesb.2015.12.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ansari, R.</creatorcontrib><creatorcontrib>Faraji Oskouie, M.</creatorcontrib><creatorcontrib>Gholami, R.</creatorcontrib><creatorcontrib>Sadeghi, F.</creatorcontrib><title>Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory</title><title>Composites. Part B, Engineering</title><description>In this study, free vibration behavior of piezoelectric Timoshenko nanobeams in the vicinity of postbuckling domain is investigated based on the nonlocal elasticity theory. It is assumed that the piezoelectric nanobeam is subjected to an axial compression force, an applied voltage and a uniform temperature change. Using Hamilton principle, the governing differential equations of motion incorporating von Kármán geometric nonlinearity and the corresponding boundary conditions are derived and then discretized on the basis of generalized differential quadrature (GDQ) scheme. After solving the parameterized equations using Newton–Raphson technique, a dynamic analysis based on a numerical solution strategy is performed to predict the natural frequencies of piezoelectric nanobeams associated with both prebuckling and postbuckling domains. Numerical results are presented to study the effects of nonlocal parameter, temperature rise and external electric voltage on the size-dependent vibration behavior of piezoelectric nanobeams with clamped–clamped (C–C), clamped-simply supported (C-SS) and simply supported-simply supported (SS-SS) end conditions. It is demonstrated that these parameters may shift the postbuckling domain to higher or lower applied axial loads.</description><subject>A. Nano-structures</subject><subject>B. Buckling</subject><subject>B. Vibration</subject><subject>C. Numerical analysis</subject><subject>Differential equations</subject><subject>Electric potential</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Nonlocal elasticity</subject><subject>Piezoelectricity</subject><subject>Postbuckling</subject><subject>Vibration</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEtrGzEUhYeQQpO0_2Gy62Ymelgz0jKYNgkEunHXQtJcYTkzuo4kB1zIf4-Ms-iyq_vgnHO5X9PcUtJTQoe7Xe9w2WMOBbLtGaGip6wnTF00V1SOqqNkUJe150J1kg_ya3Od844QshKcXTXvmy2kBTuYwZWE3QJua2JwZm7fgk2mBIwt-raeKPbgXmaY2n2Av3g2BNduwoJ5C_EF22giWjBLbq3JVVitZQttxDjjKRFmk0twoRxPe0zHb80Xb-YM3z_rTfPn18_N-rF7_v3wtL5_7hwXq9LR-qqxQJRkBgbrpBG8joMSXI3eOiEtcd4Tx7xUK_B2mrjwdpAjGcVAJb9pfpxz9wlfD5CLXkJ2MM8mAh6ypqPibCSSsypVZ6lLmHMCr_cpLCYdNSX6hFzv9D_I9Qm5pkxX5NW7Pnuh_vIWIOnsAkQHU0iVlp4w_EfKB7lelPg</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Ansari, R.</creator><creator>Faraji Oskouie, M.</creator><creator>Gholami, R.</creator><creator>Sadeghi, F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160315</creationdate><title>Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory</title><author>Ansari, R. ; Faraji Oskouie, M. ; Gholami, R. ; Sadeghi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-1101abe0982ae6bc8a53be0695397fbc58b0cff0c2f894efbdd35fb6870756183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A. Nano-structures</topic><topic>B. Buckling</topic><topic>B. Vibration</topic><topic>C. Numerical analysis</topic><topic>Differential equations</topic><topic>Electric potential</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Nonlocal elasticity</topic><topic>Piezoelectricity</topic><topic>Postbuckling</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, R.</creatorcontrib><creatorcontrib>Faraji Oskouie, M.</creatorcontrib><creatorcontrib>Gholami, R.</creatorcontrib><creatorcontrib>Sadeghi, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, R.</au><au>Faraji Oskouie, M.</au><au>Gholami, R.</au><au>Sadeghi, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2016-03-15</date><risdate>2016</risdate><volume>89</volume><spage>316</spage><epage>327</epage><pages>316-327</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>In this study, free vibration behavior of piezoelectric Timoshenko nanobeams in the vicinity of postbuckling domain is investigated based on the nonlocal elasticity theory. It is assumed that the piezoelectric nanobeam is subjected to an axial compression force, an applied voltage and a uniform temperature change. Using Hamilton principle, the governing differential equations of motion incorporating von Kármán geometric nonlinearity and the corresponding boundary conditions are derived and then discretized on the basis of generalized differential quadrature (GDQ) scheme. After solving the parameterized equations using Newton–Raphson technique, a dynamic analysis based on a numerical solution strategy is performed to predict the natural frequencies of piezoelectric nanobeams associated with both prebuckling and postbuckling domains. Numerical results are presented to study the effects of nonlocal parameter, temperature rise and external electric voltage on the size-dependent vibration behavior of piezoelectric nanobeams with clamped–clamped (C–C), clamped-simply supported (C-SS) and simply supported-simply supported (SS-SS) end conditions. It is demonstrated that these parameters may shift the postbuckling domain to higher or lower applied axial loads.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2015.12.029</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2016-03, Vol.89, p.316-327
issn 1359-8368
1879-1069
language eng
recordid cdi_proquest_miscellaneous_1793270832
source Access via ScienceDirect (Elsevier)
subjects A. Nano-structures
B. Buckling
B. Vibration
C. Numerical analysis
Differential equations
Electric potential
Mathematical models
Nanostructure
Nonlocal elasticity
Piezoelectricity
Postbuckling
Vibration
title Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-electro-mechanical%20vibration%20of%20postbuckled%20piezoelectric%20Timoshenko%20nanobeams%20based%20on%20the%20nonlocal%20elasticity%20theory&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Ansari,%20R.&rft.date=2016-03-15&rft.volume=89&rft.spage=316&rft.epage=327&rft.pages=316-327&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2015.12.029&rft_dat=%3Cproquest_cross%3E1793270832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793270832&rft_id=info:pmid/&rft_els_id=S1359836815007672&rfr_iscdi=true