CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE
ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2015-10, Vol.812 (2), p.128 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 128 |
container_title | The Astrophysical journal |
container_volume | 812 |
creator | Czekala, Ian Andrews, Sean M. Mandel, Kaisey S. Hogg, David W. Green, Gregory M. |
description | ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf. |
doi_str_mv | 10.1088/0004-637X/812/2/128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793270767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773825161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</originalsourceid><addsrcrecordid>eNqNkc1Og0AUhSdGE2v1CdyQuHGDzA8ww7IitEQCDaVJdxM6zESaFipDF769QzAujaubm_udk5tzAHhE8AVBxhwIoWv7hO4chrCDHYTZFZghjzDbJR69BrNf4hbcaX0YVxwEM7AM82xTFtuwTLKltbDiNNolr2lkpcl7lCarPH-z4m1mznlmxXlhbdZRWBb5JszXSWglWRwVURZG9-BGVUctH37mHGzjqAxXdpovk3CR2sLFbLAJUmxP9z5ldVVLVROmKh8RRWoMIRFK-cE-gF4FsesxT2GBBQr8GiIqfUkgIXPwNPl2emi4Fs0gxYfo2laKgWPsIUaZZ6jniTr33edF6oGfGi3k8Vi1srtojmhAMIXUp_9AKWHG13w5B2RCRd9p3UvFz31zqvovjiAfe-BjrHxMmZseOOamB6NyJlXTnfmhu_StyedPxTfRc4EC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773825161</pqid></control><display><type>article</type><title>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</title><source>IOP Publishing Free Content</source><creator>Czekala, Ian ; Andrews, Sean M. ; Mandel, Kaisey S. ; Hogg, David W. ; Green, Gregory M.</creator><creatorcontrib>Czekala, Ian ; Andrews, Sean M. ; Mandel, Kaisey S. ; Hogg, David W. ; Green, Gregory M.</creatorcontrib><description>ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/812/2/128</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Construction ; Covariance ; DATA ANALYSIS ; DWARF STARS ; Fittings ; GAUSSIAN PROCESSES ; Inference ; INTERPOLATION ; KERNELS ; Mathematical models ; methods: data analysis ; methods: statistical ; OPACITY ; PLANETS ; PROBABILISTIC ESTIMATION ; RESOLUTION ; SIGNAL-TO-NOISE RATIO ; Spectra ; Spectral lines ; stars: fundamental parameters ; stars: late-type ; stars: statistics ; STATISTICS ; techniques: spectroscopic</subject><ispartof>The Astrophysical journal, 2015-10, Vol.812 (2), p.128</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</citedby><cites>FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</cites><orcidid>0000-0003-2253-2270 ; 0000-0001-9846-4417 ; 0000-0002-1483-8811 ; 0000-0001-5417-2260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/812/2/128/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/812/2/128$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22518785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Czekala, Ian</creatorcontrib><creatorcontrib>Andrews, Sean M.</creatorcontrib><creatorcontrib>Mandel, Kaisey S.</creatorcontrib><creatorcontrib>Hogg, David W.</creatorcontrib><creatorcontrib>Green, Gregory M.</creatorcontrib><title>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.</description><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Construction</subject><subject>Covariance</subject><subject>DATA ANALYSIS</subject><subject>DWARF STARS</subject><subject>Fittings</subject><subject>GAUSSIAN PROCESSES</subject><subject>Inference</subject><subject>INTERPOLATION</subject><subject>KERNELS</subject><subject>Mathematical models</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>OPACITY</subject><subject>PLANETS</subject><subject>PROBABILISTIC ESTIMATION</subject><subject>RESOLUTION</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>Spectra</subject><subject>Spectral lines</subject><subject>stars: fundamental parameters</subject><subject>stars: late-type</subject><subject>stars: statistics</subject><subject>STATISTICS</subject><subject>techniques: spectroscopic</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Og0AUhSdGE2v1CdyQuHGDzA8ww7IitEQCDaVJdxM6zESaFipDF769QzAujaubm_udk5tzAHhE8AVBxhwIoWv7hO4chrCDHYTZFZghjzDbJR69BrNf4hbcaX0YVxwEM7AM82xTFtuwTLKltbDiNNolr2lkpcl7lCarPH-z4m1mznlmxXlhbdZRWBb5JszXSWglWRwVURZG9-BGVUctH37mHGzjqAxXdpovk3CR2sLFbLAJUmxP9z5ldVVLVROmKh8RRWoMIRFK-cE-gF4FsesxT2GBBQr8GiIqfUkgIXPwNPl2emi4Fs0gxYfo2laKgWPsIUaZZ6jniTr33edF6oGfGi3k8Vi1srtojmhAMIXUp_9AKWHG13w5B2RCRd9p3UvFz31zqvovjiAfe-BjrHxMmZseOOamB6NyJlXTnfmhu_StyedPxTfRc4EC</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Czekala, Ian</creator><creator>Andrews, Sean M.</creator><creator>Mandel, Kaisey S.</creator><creator>Hogg, David W.</creator><creator>Green, Gregory M.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2253-2270</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-1483-8811</orcidid><orcidid>https://orcid.org/0000-0001-5417-2260</orcidid></search><sort><creationdate>20151020</creationdate><title>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</title><author>Czekala, Ian ; Andrews, Sean M. ; Mandel, Kaisey S. ; Hogg, David W. ; Green, Gregory M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Construction</topic><topic>Covariance</topic><topic>DATA ANALYSIS</topic><topic>DWARF STARS</topic><topic>Fittings</topic><topic>GAUSSIAN PROCESSES</topic><topic>Inference</topic><topic>INTERPOLATION</topic><topic>KERNELS</topic><topic>Mathematical models</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>OPACITY</topic><topic>PLANETS</topic><topic>PROBABILISTIC ESTIMATION</topic><topic>RESOLUTION</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>Spectra</topic><topic>Spectral lines</topic><topic>stars: fundamental parameters</topic><topic>stars: late-type</topic><topic>stars: statistics</topic><topic>STATISTICS</topic><topic>techniques: spectroscopic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czekala, Ian</creatorcontrib><creatorcontrib>Andrews, Sean M.</creatorcontrib><creatorcontrib>Mandel, Kaisey S.</creatorcontrib><creatorcontrib>Hogg, David W.</creatorcontrib><creatorcontrib>Green, Gregory M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Czekala, Ian</au><au>Andrews, Sean M.</au><au>Mandel, Kaisey S.</au><au>Hogg, David W.</au><au>Green, Gregory M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>812</volume><issue>2</issue><spage>128</spage><pages>128-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/812/2/128</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2253-2270</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-1483-8811</orcidid><orcidid>https://orcid.org/0000-0001-5417-2260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2015-10, Vol.812 (2), p.128 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793270767 |
source | IOP Publishing Free Content |
subjects | ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Construction Covariance DATA ANALYSIS DWARF STARS Fittings GAUSSIAN PROCESSES Inference INTERPOLATION KERNELS Mathematical models methods: data analysis methods: statistical OPACITY PLANETS PROBABILISTIC ESTIMATION RESOLUTION SIGNAL-TO-NOISE RATIO Spectra Spectral lines stars: fundamental parameters stars: late-type stars: statistics STATISTICS techniques: spectroscopic |
title | CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONSTRUCTING%20A%20FLEXIBLE%20LIKELIHOOD%20FUNCTION%20FOR%20SPECTROSCOPIC%20INFERENCE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Czekala,%20Ian&rft.date=2015-10-20&rft.volume=812&rft.issue=2&rft.spage=128&rft.pages=128-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/812/2/128&rft_dat=%3Cproquest_O3W%3E1773825161%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773825161&rft_id=info:pmid/&rfr_iscdi=true |