CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE

ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-10, Vol.812 (2), p.128
Hauptverfasser: Czekala, Ian, Andrews, Sean M., Mandel, Kaisey S., Hogg, David W., Green, Gregory M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 128
container_title The Astrophysical journal
container_volume 812
creator Czekala, Ian
Andrews, Sean M.
Mandel, Kaisey S.
Hogg, David W.
Green, Gregory M.
description ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.
doi_str_mv 10.1088/0004-637X/812/2/128
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793270767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773825161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</originalsourceid><addsrcrecordid>eNqNkc1Og0AUhSdGE2v1CdyQuHGDzA8ww7IitEQCDaVJdxM6zESaFipDF769QzAujaubm_udk5tzAHhE8AVBxhwIoWv7hO4chrCDHYTZFZghjzDbJR69BrNf4hbcaX0YVxwEM7AM82xTFtuwTLKltbDiNNolr2lkpcl7lCarPH-z4m1mznlmxXlhbdZRWBb5JszXSWglWRwVURZG9-BGVUctH37mHGzjqAxXdpovk3CR2sLFbLAJUmxP9z5ldVVLVROmKh8RRWoMIRFK-cE-gF4FsesxT2GBBQr8GiIqfUkgIXPwNPl2emi4Fs0gxYfo2laKgWPsIUaZZ6jniTr33edF6oGfGi3k8Vi1srtojmhAMIXUp_9AKWHG13w5B2RCRd9p3UvFz31zqvovjiAfe-BjrHxMmZseOOamB6NyJlXTnfmhu_StyedPxTfRc4EC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773825161</pqid></control><display><type>article</type><title>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</title><source>IOP Publishing Free Content</source><creator>Czekala, Ian ; Andrews, Sean M. ; Mandel, Kaisey S. ; Hogg, David W. ; Green, Gregory M.</creator><creatorcontrib>Czekala, Ian ; Andrews, Sean M. ; Mandel, Kaisey S. ; Hogg, David W. ; Green, Gregory M.</creatorcontrib><description>ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/812/2/128</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Construction ; Covariance ; DATA ANALYSIS ; DWARF STARS ; Fittings ; GAUSSIAN PROCESSES ; Inference ; INTERPOLATION ; KERNELS ; Mathematical models ; methods: data analysis ; methods: statistical ; OPACITY ; PLANETS ; PROBABILISTIC ESTIMATION ; RESOLUTION ; SIGNAL-TO-NOISE RATIO ; Spectra ; Spectral lines ; stars: fundamental parameters ; stars: late-type ; stars: statistics ; STATISTICS ; techniques: spectroscopic</subject><ispartof>The Astrophysical journal, 2015-10, Vol.812 (2), p.128</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</citedby><cites>FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</cites><orcidid>0000-0003-2253-2270 ; 0000-0001-9846-4417 ; 0000-0002-1483-8811 ; 0000-0001-5417-2260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/812/2/128/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/812/2/128$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22518785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Czekala, Ian</creatorcontrib><creatorcontrib>Andrews, Sean M.</creatorcontrib><creatorcontrib>Mandel, Kaisey S.</creatorcontrib><creatorcontrib>Hogg, David W.</creatorcontrib><creatorcontrib>Green, Gregory M.</creatorcontrib><title>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.</description><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Construction</subject><subject>Covariance</subject><subject>DATA ANALYSIS</subject><subject>DWARF STARS</subject><subject>Fittings</subject><subject>GAUSSIAN PROCESSES</subject><subject>Inference</subject><subject>INTERPOLATION</subject><subject>KERNELS</subject><subject>Mathematical models</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>OPACITY</subject><subject>PLANETS</subject><subject>PROBABILISTIC ESTIMATION</subject><subject>RESOLUTION</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>Spectra</subject><subject>Spectral lines</subject><subject>stars: fundamental parameters</subject><subject>stars: late-type</subject><subject>stars: statistics</subject><subject>STATISTICS</subject><subject>techniques: spectroscopic</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Og0AUhSdGE2v1CdyQuHGDzA8ww7IitEQCDaVJdxM6zESaFipDF769QzAujaubm_udk5tzAHhE8AVBxhwIoWv7hO4chrCDHYTZFZghjzDbJR69BrNf4hbcaX0YVxwEM7AM82xTFtuwTLKltbDiNNolr2lkpcl7lCarPH-z4m1mznlmxXlhbdZRWBb5JszXSWglWRwVURZG9-BGVUctH37mHGzjqAxXdpovk3CR2sLFbLAJUmxP9z5ldVVLVROmKh8RRWoMIRFK-cE-gF4FsesxT2GBBQr8GiIqfUkgIXPwNPl2emi4Fs0gxYfo2laKgWPsIUaZZ6jniTr33edF6oGfGi3k8Vi1srtojmhAMIXUp_9AKWHG13w5B2RCRd9p3UvFz31zqvovjiAfe-BjrHxMmZseOOamB6NyJlXTnfmhu_StyedPxTfRc4EC</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Czekala, Ian</creator><creator>Andrews, Sean M.</creator><creator>Mandel, Kaisey S.</creator><creator>Hogg, David W.</creator><creator>Green, Gregory M.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2253-2270</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-1483-8811</orcidid><orcidid>https://orcid.org/0000-0001-5417-2260</orcidid></search><sort><creationdate>20151020</creationdate><title>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</title><author>Czekala, Ian ; Andrews, Sean M. ; Mandel, Kaisey S. ; Hogg, David W. ; Green, Gregory M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-31f8b7b678dadefd38fa613f3d2003cff69b905a024585f2c2c196d017e6e3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Construction</topic><topic>Covariance</topic><topic>DATA ANALYSIS</topic><topic>DWARF STARS</topic><topic>Fittings</topic><topic>GAUSSIAN PROCESSES</topic><topic>Inference</topic><topic>INTERPOLATION</topic><topic>KERNELS</topic><topic>Mathematical models</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>OPACITY</topic><topic>PLANETS</topic><topic>PROBABILISTIC ESTIMATION</topic><topic>RESOLUTION</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>Spectra</topic><topic>Spectral lines</topic><topic>stars: fundamental parameters</topic><topic>stars: late-type</topic><topic>stars: statistics</topic><topic>STATISTICS</topic><topic>techniques: spectroscopic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czekala, Ian</creatorcontrib><creatorcontrib>Andrews, Sean M.</creatorcontrib><creatorcontrib>Mandel, Kaisey S.</creatorcontrib><creatorcontrib>Hogg, David W.</creatorcontrib><creatorcontrib>Green, Gregory M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Czekala, Ian</au><au>Andrews, Sean M.</au><au>Mandel, Kaisey S.</au><au>Hogg, David W.</au><au>Green, Gregory M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>812</volume><issue>2</issue><spage>128</spage><pages>128-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/812/2/128</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2253-2270</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-1483-8811</orcidid><orcidid>https://orcid.org/0000-0001-5417-2260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2015-10, Vol.812 (2), p.128
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_miscellaneous_1793270767
source IOP Publishing Free Content
subjects ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Construction
Covariance
DATA ANALYSIS
DWARF STARS
Fittings
GAUSSIAN PROCESSES
Inference
INTERPOLATION
KERNELS
Mathematical models
methods: data analysis
methods: statistical
OPACITY
PLANETS
PROBABILISTIC ESTIMATION
RESOLUTION
SIGNAL-TO-NOISE RATIO
Spectra
Spectral lines
stars: fundamental parameters
stars: late-type
stars: statistics
STATISTICS
techniques: spectroscopic
title CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONSTRUCTING%20A%20FLEXIBLE%20LIKELIHOOD%20FUNCTION%20FOR%20SPECTROSCOPIC%20INFERENCE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Czekala,%20Ian&rft.date=2015-10-20&rft.volume=812&rft.issue=2&rft.spage=128&rft.pages=128-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/812/2/128&rft_dat=%3Cproquest_O3W%3E1773825161%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773825161&rft_id=info:pmid/&rfr_iscdi=true