Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting

Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016-03, Vol.18 (1), p.7459-7467
Hauptverfasser: Baghbanzadeh, Sima, Kassal, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7467
container_issue 1
container_start_page 7459
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Baghbanzadeh, Sima
Kassal, Ivan
description Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperative phenomenon of supertransfer. However, isolating the role of purely coherent effects is difficult because any change to the delocalization also changes the energy landscape. Here, we show that the relative importance of the two processes can be determined by comparing the natural light-harvesting apparatus with counterfactual models in which the delocalization and the energy landscape are altered. Applied to the example of purple bacteria, our approach shows that although supertransfer does enhance the rates somewhat, the energetic funnelling plays the decisive role. Because delocalization has a minor role (and is sometimes detrimental), it is most likely not adaptive, being a side-effect of the dense chlorophyll packing that evolved to increase light absorption per reaction center. The contributions of energy funnelling and excitonic delocalization to the performance of photosynthetic complexes can be disentangled by comparing the performance of the natural complexes with models in which both the energy landscape and the delocalization are altered.
doi_str_mv 10.1039/c6cp00104a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793270713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793270713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-fdf3718716abad8567e7f7f4a2550ab3a45f63c73f2a704bd446012643b25faa3</originalsourceid><addsrcrecordid>eNqNkb1PwzAQxS0EoqWwsIM8IqSAHTt2MlbhU6oEA8yR49iNUWoXO0Eqfz3uB2VlupPe796d3gFwjtENRqS4lUwuEcKIigMwxpSRpEA5Pdz3nI3ASQgfKEIZJsdglLK8KDimYyDvTOiNnQ8mtLHAvlXQu04F6DRUVvn5CurBWtV1a1nYBjaqc1J05lv0xlloLFy2rndhZeNwbyTszLztYSv8l9p4n4IjLbqgznZ1At4f7t_Kp2T28vhcTmeJJDzvE91ownHOMRO1aPKMccU111SkWYZETQTNNCOSE50KjmjdUMoQThkldZppIcgEXG19l959DnF3tTBBxsuFVW4IFeYFSTnimPwD5ShnOC3SiF5vUeldCF7paunNQvhVhVG1zr8qWfm6yX8a4cud71AvVLNHfwOPwMUW8EHu1b8Hkh_dx4tm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770861292</pqid></control><display><type>article</type><title>Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Baghbanzadeh, Sima ; Kassal, Ivan</creator><creatorcontrib>Baghbanzadeh, Sima ; Kassal, Ivan</creatorcontrib><description>Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperative phenomenon of supertransfer. However, isolating the role of purely coherent effects is difficult because any change to the delocalization also changes the energy landscape. Here, we show that the relative importance of the two processes can be determined by comparing the natural light-harvesting apparatus with counterfactual models in which the delocalization and the energy landscape are altered. Applied to the example of purple bacteria, our approach shows that although supertransfer does enhance the rates somewhat, the energetic funnelling plays the decisive role. Because delocalization has a minor role (and is sometimes detrimental), it is most likely not adaptive, being a side-effect of the dense chlorophyll packing that evolved to increase light absorption per reaction center. The contributions of energy funnelling and excitonic delocalization to the performance of photosynthetic complexes can be disentangled by comparing the performance of the natural complexes with models in which both the energy landscape and the delocalization are altered.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp00104a</identifier><identifier>PMID: 26899714</identifier><language>eng</language><publisher>England</publisher><subject>Antennas ; Bacteria ; Coherence ; Energy Transfer ; Evolution ; Excitation ; Excitons ; Landscapes ; Light-Harvesting Protein Complexes - chemistry ; Photosynthesis ; Rhodobacter sphaeroides - metabolism</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-03, Vol.18 (1), p.7459-7467</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-fdf3718716abad8567e7f7f4a2550ab3a45f63c73f2a704bd446012643b25faa3</citedby><cites>FETCH-LOGICAL-c378t-fdf3718716abad8567e7f7f4a2550ab3a45f63c73f2a704bd446012643b25faa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26899714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baghbanzadeh, Sima</creatorcontrib><creatorcontrib>Kassal, Ivan</creatorcontrib><title>Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperative phenomenon of supertransfer. However, isolating the role of purely coherent effects is difficult because any change to the delocalization also changes the energy landscape. Here, we show that the relative importance of the two processes can be determined by comparing the natural light-harvesting apparatus with counterfactual models in which the delocalization and the energy landscape are altered. Applied to the example of purple bacteria, our approach shows that although supertransfer does enhance the rates somewhat, the energetic funnelling plays the decisive role. Because delocalization has a minor role (and is sometimes detrimental), it is most likely not adaptive, being a side-effect of the dense chlorophyll packing that evolved to increase light absorption per reaction center. The contributions of energy funnelling and excitonic delocalization to the performance of photosynthetic complexes can be disentangled by comparing the performance of the natural complexes with models in which both the energy landscape and the delocalization are altered.</description><subject>Antennas</subject><subject>Bacteria</subject><subject>Coherence</subject><subject>Energy Transfer</subject><subject>Evolution</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Landscapes</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Photosynthesis</subject><subject>Rhodobacter sphaeroides - metabolism</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1PwzAQxS0EoqWwsIM8IqSAHTt2MlbhU6oEA8yR49iNUWoXO0Eqfz3uB2VlupPe796d3gFwjtENRqS4lUwuEcKIigMwxpSRpEA5Pdz3nI3ASQgfKEIZJsdglLK8KDimYyDvTOiNnQ8mtLHAvlXQu04F6DRUVvn5CurBWtV1a1nYBjaqc1J05lv0xlloLFy2rndhZeNwbyTszLztYSv8l9p4n4IjLbqgznZ1At4f7t_Kp2T28vhcTmeJJDzvE91ownHOMRO1aPKMccU111SkWYZETQTNNCOSE50KjmjdUMoQThkldZppIcgEXG19l959DnF3tTBBxsuFVW4IFeYFSTnimPwD5ShnOC3SiF5vUeldCF7paunNQvhVhVG1zr8qWfm6yX8a4cud71AvVLNHfwOPwMUW8EHu1b8Hkh_dx4tm</recordid><startdate>20160314</startdate><enddate>20160314</enddate><creator>Baghbanzadeh, Sima</creator><creator>Kassal, Ivan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160314</creationdate><title>Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting</title><author>Baghbanzadeh, Sima ; Kassal, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-fdf3718716abad8567e7f7f4a2550ab3a45f63c73f2a704bd446012643b25faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antennas</topic><topic>Bacteria</topic><topic>Coherence</topic><topic>Energy Transfer</topic><topic>Evolution</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Landscapes</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Photosynthesis</topic><topic>Rhodobacter sphaeroides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghbanzadeh, Sima</creatorcontrib><creatorcontrib>Kassal, Ivan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghbanzadeh, Sima</au><au>Kassal, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-03-14</date><risdate>2016</risdate><volume>18</volume><issue>1</issue><spage>7459</spage><epage>7467</epage><pages>7459-7467</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperative phenomenon of supertransfer. However, isolating the role of purely coherent effects is difficult because any change to the delocalization also changes the energy landscape. Here, we show that the relative importance of the two processes can be determined by comparing the natural light-harvesting apparatus with counterfactual models in which the delocalization and the energy landscape are altered. Applied to the example of purple bacteria, our approach shows that although supertransfer does enhance the rates somewhat, the energetic funnelling plays the decisive role. Because delocalization has a minor role (and is sometimes detrimental), it is most likely not adaptive, being a side-effect of the dense chlorophyll packing that evolved to increase light absorption per reaction center. The contributions of energy funnelling and excitonic delocalization to the performance of photosynthetic complexes can be disentangled by comparing the performance of the natural complexes with models in which both the energy landscape and the delocalization are altered.</abstract><cop>England</cop><pmid>26899714</pmid><doi>10.1039/c6cp00104a</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016-03, Vol.18 (1), p.7459-7467
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1793270713
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Antennas
Bacteria
Coherence
Energy Transfer
Evolution
Excitation
Excitons
Landscapes
Light-Harvesting Protein Complexes - chemistry
Photosynthesis
Rhodobacter sphaeroides - metabolism
title Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20the%20roles%20of%20energy%20funnelling%20and%20delocalization%20in%20photosynthetic%20light%20harvesting&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Baghbanzadeh,%20Sima&rft.date=2016-03-14&rft.volume=18&rft.issue=1&rft.spage=7459&rft.epage=7467&rft.pages=7459-7467&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp00104a&rft_dat=%3Cproquest_pubme%3E1793270713%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770861292&rft_id=info:pmid/26899714&rfr_iscdi=true