Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights
Heterolytic activation of dihydrogen molecule (H2) by hydroxo-/sulfido-bridged ruthenium–germanium dinuclear complex [Dmp(Dep)Ge(μ-S)(μ-OH)Ru(PPh3)]+ (1) (Dmp = 2,6-dimesitylphenyl, Dep = 2,6-diethylphenyl) is theoretically investigated with the ONIOM(DFT:MM) method. H2 approaches 1 to afford an int...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-01, Vol.54 (2), p.576-585 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 2 |
container_start_page | 576 |
container_title | Inorganic chemistry |
container_volume | 54 |
creator | Ochi, Noriaki Matsumoto, Tsuyoshi Dei, Takeya Nakao, Yoshihide Sato, Hirofumi Tatsumi, Kazuyuki Sakaki, Shigeyoshi |
description | Heterolytic activation of dihydrogen molecule (H2) by hydroxo-/sulfido-bridged ruthenium–germanium dinuclear complex [Dmp(Dep)Ge(μ-S)(μ-OH)Ru(PPh3)]+ (1) (Dmp = 2,6-dimesitylphenyl, Dep = 2,6-diethylphenyl) is theoretically investigated with the ONIOM(DFT:MM) method. H2 approaches 1 to afford an intermediate [Dmp(Dep)(HO)Ge(μ-S)Ru(PPh3)]+-(H2) (2). In 2, the Ru–OH coordinate bond is broken but H2 does not yet coordinate with the Ru center. Then, the H2 further approaches the Ru center through a transition state TS 2–3 to afford a dihydrogen σ-complex [Dmp(Dep)(HO)Ge(μ-S)Ru(η2-H2)(PPh3)]+ (3). Starting from 3, the H–H σ-bond is cleaved by the Ru and Ge–OH moieties to form [Dmp(Dep)(H2O)Ge(μ-S)Ru(H)(PPh3)]+ (4). In 4, hydride and H2O coordinate with the Ru and Ge centers, respectively. Electron population changes clearly indicate that this H–H σ-bond cleavage occurs in a heterolytic manner like H2 activation by hydrogenase. Finally, the H2O dissociates from the Ge center to afford [Dmp(Dep)Ge(μ-S)Ru(H)(PPh3)]+ (PRD). This step is rate-determining. The activation energy of the backward reaction is moderately smaller than that of the forward reaction, which is consistent with the experimental result that PRD reacts with H2O to form 1 and H2. In the Si analogue [Dmp(Dep)Si(μ-S)(μ-OH)Ru(PPh3)]+ (1 Si ), the isomerization of 1 Si to 2 Si easily occurs with a small activation energy, while the dissociation of H2O from the Si center needs a considerably large activation energy. Based on these computational findings, it is emphasized that the reaction of 1 resembles well that of hydrogenase and the use of Ge in 1 is crucial for this heterolytic H–H σ-bond activation. |
doi_str_mv | 10.1021/ic502463y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793266463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652390421</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-c303da2a1d7345a6adfb8572b709aa5f6be3ecbc20cb450c07bfc20f9b78cbad3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCghdA3iDRRVr_xM5kWQboVCpCgiKxi_xzM-PKiQc7Rs2OHQ_AG_IkeDSlKyRW99yrT-dK5yD0gpIzShg9d0YQVks-P0ILKhipBCVfH6MFIUVTKdsjdJzSLSGk5bV8io6YEKJlol2gn2uYIAY_T87gCzO572pyYcShx2_ddrYxbGDEH4IHkz1gPeP1_ngXqvPP2ffOhupNdHYDFn_K0xZGl4ffP35dQhzUXheXMRsPKuJVGHYe7s7wzRZChPJQeXw1JrfZTukZetIrn-D5_TxBX96_u1mtq-uPl1eri-tK1ct6qgwn3CqmqG14LZRUttdL0TDdkFYp0UsNHIw2jBhdC2JIo_uy9K1ulkYry0_Q64PvLoZvGdLUDS4Z8F6NEHLqaNNyJmUJ8_-oFIy3pGa0oKcH1MSQUoS-20U3qDh3lHT7irqHigr78t426wHsA_m3kwK8OgDKpO425DiWQP5h9Ae_UZwa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652390421</pqid></control><display><type>article</type><title>Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights</title><source>ACS Publications</source><creator>Ochi, Noriaki ; Matsumoto, Tsuyoshi ; Dei, Takeya ; Nakao, Yoshihide ; Sato, Hirofumi ; Tatsumi, Kazuyuki ; Sakaki, Shigeyoshi</creator><creatorcontrib>Ochi, Noriaki ; Matsumoto, Tsuyoshi ; Dei, Takeya ; Nakao, Yoshihide ; Sato, Hirofumi ; Tatsumi, Kazuyuki ; Sakaki, Shigeyoshi</creatorcontrib><description>Heterolytic activation of dihydrogen molecule (H2) by hydroxo-/sulfido-bridged ruthenium–germanium dinuclear complex [Dmp(Dep)Ge(μ-S)(μ-OH)Ru(PPh3)]+ (1) (Dmp = 2,6-dimesitylphenyl, Dep = 2,6-diethylphenyl) is theoretically investigated with the ONIOM(DFT:MM) method. H2 approaches 1 to afford an intermediate [Dmp(Dep)(HO)Ge(μ-S)Ru(PPh3)]+-(H2) (2). In 2, the Ru–OH coordinate bond is broken but H2 does not yet coordinate with the Ru center. Then, the H2 further approaches the Ru center through a transition state TS 2–3 to afford a dihydrogen σ-complex [Dmp(Dep)(HO)Ge(μ-S)Ru(η2-H2)(PPh3)]+ (3). Starting from 3, the H–H σ-bond is cleaved by the Ru and Ge–OH moieties to form [Dmp(Dep)(H2O)Ge(μ-S)Ru(H)(PPh3)]+ (4). In 4, hydride and H2O coordinate with the Ru and Ge centers, respectively. Electron population changes clearly indicate that this H–H σ-bond cleavage occurs in a heterolytic manner like H2 activation by hydrogenase. Finally, the H2O dissociates from the Ge center to afford [Dmp(Dep)Ge(μ-S)Ru(H)(PPh3)]+ (PRD). This step is rate-determining. The activation energy of the backward reaction is moderately smaller than that of the forward reaction, which is consistent with the experimental result that PRD reacts with H2O to form 1 and H2. In the Si analogue [Dmp(Dep)Si(μ-S)(μ-OH)Ru(PPh3)]+ (1 Si ), the isomerization of 1 Si to 2 Si easily occurs with a small activation energy, while the dissociation of H2O from the Si center needs a considerably large activation energy. Based on these computational findings, it is emphasized that the reaction of 1 resembles well that of hydrogenase and the use of Ge in 1 is crucial for this heterolytic H–H σ-bond activation.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic502463y</identifier><identifier>PMID: 25559259</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Activation ; Activation energy ; Cleavage ; Germanium ; Hydrogenase ; Isomerization ; Mathematical models ; Silicon</subject><ispartof>Inorganic chemistry, 2015-01, Vol.54 (2), p.576-585</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-c303da2a1d7345a6adfb8572b709aa5f6be3ecbc20cb450c07bfc20f9b78cbad3</citedby><cites>FETCH-LOGICAL-a484t-c303da2a1d7345a6adfb8572b709aa5f6be3ecbc20cb450c07bfc20f9b78cbad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic502463y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic502463y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25559259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochi, Noriaki</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Dei, Takeya</creatorcontrib><creatorcontrib>Nakao, Yoshihide</creatorcontrib><creatorcontrib>Sato, Hirofumi</creatorcontrib><creatorcontrib>Tatsumi, Kazuyuki</creatorcontrib><creatorcontrib>Sakaki, Shigeyoshi</creatorcontrib><title>Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Heterolytic activation of dihydrogen molecule (H2) by hydroxo-/sulfido-bridged ruthenium–germanium dinuclear complex [Dmp(Dep)Ge(μ-S)(μ-OH)Ru(PPh3)]+ (1) (Dmp = 2,6-dimesitylphenyl, Dep = 2,6-diethylphenyl) is theoretically investigated with the ONIOM(DFT:MM) method. H2 approaches 1 to afford an intermediate [Dmp(Dep)(HO)Ge(μ-S)Ru(PPh3)]+-(H2) (2). In 2, the Ru–OH coordinate bond is broken but H2 does not yet coordinate with the Ru center. Then, the H2 further approaches the Ru center through a transition state TS 2–3 to afford a dihydrogen σ-complex [Dmp(Dep)(HO)Ge(μ-S)Ru(η2-H2)(PPh3)]+ (3). Starting from 3, the H–H σ-bond is cleaved by the Ru and Ge–OH moieties to form [Dmp(Dep)(H2O)Ge(μ-S)Ru(H)(PPh3)]+ (4). In 4, hydride and H2O coordinate with the Ru and Ge centers, respectively. Electron population changes clearly indicate that this H–H σ-bond cleavage occurs in a heterolytic manner like H2 activation by hydrogenase. Finally, the H2O dissociates from the Ge center to afford [Dmp(Dep)Ge(μ-S)Ru(H)(PPh3)]+ (PRD). This step is rate-determining. The activation energy of the backward reaction is moderately smaller than that of the forward reaction, which is consistent with the experimental result that PRD reacts with H2O to form 1 and H2. In the Si analogue [Dmp(Dep)Si(μ-S)(μ-OH)Ru(PPh3)]+ (1 Si ), the isomerization of 1 Si to 2 Si easily occurs with a small activation energy, while the dissociation of H2O from the Si center needs a considerably large activation energy. Based on these computational findings, it is emphasized that the reaction of 1 resembles well that of hydrogenase and the use of Ge in 1 is crucial for this heterolytic H–H σ-bond activation.</description><subject>Activation</subject><subject>Activation energy</subject><subject>Cleavage</subject><subject>Germanium</subject><subject>Hydrogenase</subject><subject>Isomerization</subject><subject>Mathematical models</subject><subject>Silicon</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EotPCghdA3iDRRVr_xM5kWQboVCpCgiKxi_xzM-PKiQc7Rs2OHQ_AG_IkeDSlKyRW99yrT-dK5yD0gpIzShg9d0YQVks-P0ILKhipBCVfH6MFIUVTKdsjdJzSLSGk5bV8io6YEKJlol2gn2uYIAY_T87gCzO572pyYcShx2_ddrYxbGDEH4IHkz1gPeP1_ngXqvPP2ffOhupNdHYDFn_K0xZGl4ffP35dQhzUXheXMRsPKuJVGHYe7s7wzRZChPJQeXw1JrfZTukZetIrn-D5_TxBX96_u1mtq-uPl1eri-tK1ct6qgwn3CqmqG14LZRUttdL0TDdkFYp0UsNHIw2jBhdC2JIo_uy9K1ulkYry0_Q64PvLoZvGdLUDS4Z8F6NEHLqaNNyJmUJ8_-oFIy3pGa0oKcH1MSQUoS-20U3qDh3lHT7irqHigr78t426wHsA_m3kwK8OgDKpO425DiWQP5h9Ae_UZwa</recordid><startdate>20150120</startdate><enddate>20150120</enddate><creator>Ochi, Noriaki</creator><creator>Matsumoto, Tsuyoshi</creator><creator>Dei, Takeya</creator><creator>Nakao, Yoshihide</creator><creator>Sato, Hirofumi</creator><creator>Tatsumi, Kazuyuki</creator><creator>Sakaki, Shigeyoshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150120</creationdate><title>Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights</title><author>Ochi, Noriaki ; Matsumoto, Tsuyoshi ; Dei, Takeya ; Nakao, Yoshihide ; Sato, Hirofumi ; Tatsumi, Kazuyuki ; Sakaki, Shigeyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-c303da2a1d7345a6adfb8572b709aa5f6be3ecbc20cb450c07bfc20f9b78cbad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Activation energy</topic><topic>Cleavage</topic><topic>Germanium</topic><topic>Hydrogenase</topic><topic>Isomerization</topic><topic>Mathematical models</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochi, Noriaki</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Dei, Takeya</creatorcontrib><creatorcontrib>Nakao, Yoshihide</creatorcontrib><creatorcontrib>Sato, Hirofumi</creatorcontrib><creatorcontrib>Tatsumi, Kazuyuki</creatorcontrib><creatorcontrib>Sakaki, Shigeyoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochi, Noriaki</au><au>Matsumoto, Tsuyoshi</au><au>Dei, Takeya</au><au>Nakao, Yoshihide</au><au>Sato, Hirofumi</au><au>Tatsumi, Kazuyuki</au><au>Sakaki, Shigeyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2015-01-20</date><risdate>2015</risdate><volume>54</volume><issue>2</issue><spage>576</spage><epage>585</epage><pages>576-585</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Heterolytic activation of dihydrogen molecule (H2) by hydroxo-/sulfido-bridged ruthenium–germanium dinuclear complex [Dmp(Dep)Ge(μ-S)(μ-OH)Ru(PPh3)]+ (1) (Dmp = 2,6-dimesitylphenyl, Dep = 2,6-diethylphenyl) is theoretically investigated with the ONIOM(DFT:MM) method. H2 approaches 1 to afford an intermediate [Dmp(Dep)(HO)Ge(μ-S)Ru(PPh3)]+-(H2) (2). In 2, the Ru–OH coordinate bond is broken but H2 does not yet coordinate with the Ru center. Then, the H2 further approaches the Ru center through a transition state TS 2–3 to afford a dihydrogen σ-complex [Dmp(Dep)(HO)Ge(μ-S)Ru(η2-H2)(PPh3)]+ (3). Starting from 3, the H–H σ-bond is cleaved by the Ru and Ge–OH moieties to form [Dmp(Dep)(H2O)Ge(μ-S)Ru(H)(PPh3)]+ (4). In 4, hydride and H2O coordinate with the Ru and Ge centers, respectively. Electron population changes clearly indicate that this H–H σ-bond cleavage occurs in a heterolytic manner like H2 activation by hydrogenase. Finally, the H2O dissociates from the Ge center to afford [Dmp(Dep)Ge(μ-S)Ru(H)(PPh3)]+ (PRD). This step is rate-determining. The activation energy of the backward reaction is moderately smaller than that of the forward reaction, which is consistent with the experimental result that PRD reacts with H2O to form 1 and H2. In the Si analogue [Dmp(Dep)Si(μ-S)(μ-OH)Ru(PPh3)]+ (1 Si ), the isomerization of 1 Si to 2 Si easily occurs with a small activation energy, while the dissociation of H2O from the Si center needs a considerably large activation energy. Based on these computational findings, it is emphasized that the reaction of 1 resembles well that of hydrogenase and the use of Ge in 1 is crucial for this heterolytic H–H σ-bond activation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25559259</pmid><doi>10.1021/ic502463y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2015-01, Vol.54 (2), p.576-585 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_1793266463 |
source | ACS Publications |
subjects | Activation Activation energy Cleavage Germanium Hydrogenase Isomerization Mathematical models Silicon |
title | Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterolytic%20Activation%20of%20Dihydrogen%20Molecule%20by%20Hydroxo-/Sulfido-Bridged%20Ruthenium%E2%80%93Germanium%20Dinuclear%20Complex.%20Theoretical%20Insights&rft.jtitle=Inorganic%20chemistry&rft.au=Ochi,%20Noriaki&rft.date=2015-01-20&rft.volume=54&rft.issue=2&rft.spage=576&rft.epage=585&rft.pages=576-585&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic502463y&rft_dat=%3Cproquest_cross%3E1652390421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652390421&rft_id=info:pmid/25559259&rfr_iscdi=true |