Effect of surface doping on the band structure of graphene: a DFT study

Various techniques, like doping, vacancy creation, strain engineering are tried to open a gap in the bandstructure of graphene and in some cases the gap has opened up. However, when the gap opens up the Dirac cones disappear. Without Dirac cones, graphene loses all its novelty. So opening a gap in g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2016-03, Vol.27 (3), p.2728-2740
Hauptverfasser: Iyakutti, K., Kumar, E. Mathan, Lakshmi, I., Thapa, Ranjit, Rajeswarapalanichamy, R., Surya, V. J., Kawazoe, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2740
container_issue 3
container_start_page 2728
container_title Journal of materials science. Materials in electronics
container_volume 27
creator Iyakutti, K.
Kumar, E. Mathan
Lakshmi, I.
Thapa, Ranjit
Rajeswarapalanichamy, R.
Surya, V. J.
Kawazoe, Y.
description Various techniques, like doping, vacancy creation, strain engineering are tried to open a gap in the bandstructure of graphene and in some cases the gap has opened up. However, when the gap opens up the Dirac cones disappear. Without Dirac cones, graphene loses all its novelty. So opening a gap in graphene, retaining Dirac cones has become a challenging task. We, through first principles study using Density Functional theory, have done band gap tuning investigations. We have succeeded in opening the band gap, retaining the Dirac cones. Surface doping (adsorption) of various elements are tried and finally surface doping of sulfur is found to induce band gap opening in graphene. The Dirac cones are retained and the graphene is now a semiconductor with fast moving massless Dirac Fermions. We are reporting this type of calculations for the first time.
doi_str_mv 10.1007/s10854-015-4083-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793265141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793265141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d0e8eab987bd8b8e5213ed0fa1ff81a4919385ec80a66c646f7fd28cc79b11e83</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gssbAY_BLHdthQaQtSJZYisVmO89wPtUmwk6H99aQKA0JiesM99-rpEHIL_AE4V48RuM4E45AxwXXKjmdkBJlKmdDJ5zkZ8TxTTGRJckmuYtxyzqVI9YjMp96ja2ntaeyCtw5pWTebakXrirZrpIWtShrb0Lm2C3jiVsE2a6zwiVr6Mlv2YVcersmFt7uINz93TD5m0-XklS3e52-T5wVzAvKWlRw12iLXqih1oTFLIMWSewvea7AihzzVGTrNrZROCumVLxPtnMoLANTpmNwPu02ovzqMrdlvosPdzlZYd9GAytNEZiCgR-_-oNu6C1X_XU9JkWglQfYUDJQLdYwBvWnCZm_DwQA3J7VmUGt6teak1hz7TjJ0Ys9WKwy_lv8tfQMrH3s1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764287616</pqid></control><display><type>article</type><title>Effect of surface doping on the band structure of graphene: a DFT study</title><source>Springer Nature - Complete Springer Journals</source><creator>Iyakutti, K. ; Kumar, E. Mathan ; Lakshmi, I. ; Thapa, Ranjit ; Rajeswarapalanichamy, R. ; Surya, V. J. ; Kawazoe, Y.</creator><creatorcontrib>Iyakutti, K. ; Kumar, E. Mathan ; Lakshmi, I. ; Thapa, Ranjit ; Rajeswarapalanichamy, R. ; Surya, V. J. ; Kawazoe, Y.</creatorcontrib><description>Various techniques, like doping, vacancy creation, strain engineering are tried to open a gap in the bandstructure of graphene and in some cases the gap has opened up. However, when the gap opens up the Dirac cones disappear. Without Dirac cones, graphene loses all its novelty. So opening a gap in graphene, retaining Dirac cones has become a challenging task. We, through first principles study using Density Functional theory, have done band gap tuning investigations. We have succeeded in opening the band gap, retaining the Dirac cones. Surface doping (adsorption) of various elements are tried and finally surface doping of sulfur is found to induce band gap opening in graphene. The Dirac cones are retained and the graphene is now a semiconductor with fast moving massless Dirac Fermions. We are reporting this type of calculations for the first time.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-015-4083-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cones ; Doping ; Graphene ; Materials Science ; Optical and Electronic Materials ; Semiconductors ; Sulfur ; Surface chemistry ; Tuning</subject><ispartof>Journal of materials science. Materials in electronics, 2016-03, Vol.27 (3), p.2728-2740</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d0e8eab987bd8b8e5213ed0fa1ff81a4919385ec80a66c646f7fd28cc79b11e83</citedby><cites>FETCH-LOGICAL-c419t-d0e8eab987bd8b8e5213ed0fa1ff81a4919385ec80a66c646f7fd28cc79b11e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-015-4083-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-015-4083-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Iyakutti, K.</creatorcontrib><creatorcontrib>Kumar, E. Mathan</creatorcontrib><creatorcontrib>Lakshmi, I.</creatorcontrib><creatorcontrib>Thapa, Ranjit</creatorcontrib><creatorcontrib>Rajeswarapalanichamy, R.</creatorcontrib><creatorcontrib>Surya, V. J.</creatorcontrib><creatorcontrib>Kawazoe, Y.</creatorcontrib><title>Effect of surface doping on the band structure of graphene: a DFT study</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Various techniques, like doping, vacancy creation, strain engineering are tried to open a gap in the bandstructure of graphene and in some cases the gap has opened up. However, when the gap opens up the Dirac cones disappear. Without Dirac cones, graphene loses all its novelty. So opening a gap in graphene, retaining Dirac cones has become a challenging task. We, through first principles study using Density Functional theory, have done band gap tuning investigations. We have succeeded in opening the band gap, retaining the Dirac cones. Surface doping (adsorption) of various elements are tried and finally surface doping of sulfur is found to induce band gap opening in graphene. The Dirac cones are retained and the graphene is now a semiconductor with fast moving massless Dirac Fermions. We are reporting this type of calculations for the first time.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cones</subject><subject>Doping</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Semiconductors</subject><subject>Sulfur</subject><subject>Surface chemistry</subject><subject>Tuning</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gssbAY_BLHdthQaQtSJZYisVmO89wPtUmwk6H99aQKA0JiesM99-rpEHIL_AE4V48RuM4E45AxwXXKjmdkBJlKmdDJ5zkZ8TxTTGRJckmuYtxyzqVI9YjMp96ja2ntaeyCtw5pWTebakXrirZrpIWtShrb0Lm2C3jiVsE2a6zwiVr6Mlv2YVcersmFt7uINz93TD5m0-XklS3e52-T5wVzAvKWlRw12iLXqih1oTFLIMWSewvea7AihzzVGTrNrZROCumVLxPtnMoLANTpmNwPu02ovzqMrdlvosPdzlZYd9GAytNEZiCgR-_-oNu6C1X_XU9JkWglQfYUDJQLdYwBvWnCZm_DwQA3J7VmUGt6teak1hz7TjJ0Ys9WKwy_lv8tfQMrH3s1</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Iyakutti, K.</creator><creator>Kumar, E. Mathan</creator><creator>Lakshmi, I.</creator><creator>Thapa, Ranjit</creator><creator>Rajeswarapalanichamy, R.</creator><creator>Surya, V. J.</creator><creator>Kawazoe, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20160301</creationdate><title>Effect of surface doping on the band structure of graphene: a DFT study</title><author>Iyakutti, K. ; Kumar, E. Mathan ; Lakshmi, I. ; Thapa, Ranjit ; Rajeswarapalanichamy, R. ; Surya, V. J. ; Kawazoe, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d0e8eab987bd8b8e5213ed0fa1ff81a4919385ec80a66c646f7fd28cc79b11e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cones</topic><topic>Doping</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Semiconductors</topic><topic>Sulfur</topic><topic>Surface chemistry</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyakutti, K.</creatorcontrib><creatorcontrib>Kumar, E. Mathan</creatorcontrib><creatorcontrib>Lakshmi, I.</creatorcontrib><creatorcontrib>Thapa, Ranjit</creatorcontrib><creatorcontrib>Rajeswarapalanichamy, R.</creatorcontrib><creatorcontrib>Surya, V. J.</creatorcontrib><creatorcontrib>Kawazoe, Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyakutti, K.</au><au>Kumar, E. Mathan</au><au>Lakshmi, I.</au><au>Thapa, Ranjit</au><au>Rajeswarapalanichamy, R.</au><au>Surya, V. J.</au><au>Kawazoe, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface doping on the band structure of graphene: a DFT study</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>27</volume><issue>3</issue><spage>2728</spage><epage>2740</epage><pages>2728-2740</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Various techniques, like doping, vacancy creation, strain engineering are tried to open a gap in the bandstructure of graphene and in some cases the gap has opened up. However, when the gap opens up the Dirac cones disappear. Without Dirac cones, graphene loses all its novelty. So opening a gap in graphene, retaining Dirac cones has become a challenging task. We, through first principles study using Density Functional theory, have done band gap tuning investigations. We have succeeded in opening the band gap, retaining the Dirac cones. Surface doping (adsorption) of various elements are tried and finally surface doping of sulfur is found to induce band gap opening in graphene. The Dirac cones are retained and the graphene is now a semiconductor with fast moving massless Dirac Fermions. We are reporting this type of calculations for the first time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-015-4083-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2016-03, Vol.27 (3), p.2728-2740
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_1793265141
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Cones
Doping
Graphene
Materials Science
Optical and Electronic Materials
Semiconductors
Sulfur
Surface chemistry
Tuning
title Effect of surface doping on the band structure of graphene: a DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20doping%20on%20the%20band%20structure%20of%20graphene:%20a%20DFT%20study&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Iyakutti,%20K.&rft.date=2016-03-01&rft.volume=27&rft.issue=3&rft.spage=2728&rft.epage=2740&rft.pages=2728-2740&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-015-4083-z&rft_dat=%3Cproquest_cross%3E1793265141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764287616&rft_id=info:pmid/&rfr_iscdi=true