Towards graphene plasmon-based free-electron infrared to X-ray sources
Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2016-01, Vol.10 (1), p.46-52 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | Nature photonics |
container_volume | 10 |
creator | Wong, Liang Jie Kaminer, Ido Ilic, Ognjen Joannopoulos, John D. Soljačić, Marin |
description | Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and
ab initio
simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves.
Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation. |
doi_str_mv | 10.1038/nphoton.2015.223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793264883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3960486921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwtevGxNMtnd5CjFLyh4qeAtZNNJP9gma7JF_O9NaRERvMwMw-8Nbx4h14xOGAV55_tVGIKfcMqqCedwQkasEaoUUsHpzyyrc3KR0obSChTnI_I4D58mLlKxjKZfocei70zaBl-2JuGicBGxxA7tEIMv1t5FE_N6CMV7Gc1XkcIuWkyX5MyZLuHVsY_J2-PDfPpczl6fXqb3s9KKSgylVKZVAmveSNnSVtjWAQUuc6HSsZoDWKS2bVpXKbASGRow4CQTjAqjYExuD3f7GD52mAa9XSeLXWc8hl3SrFHA6_wnZPTmD7rJXn12l6m6AaiYqjNFD5SNIaWITvdxvTXxSzOq98HqY7B6H6zOwWYJO0hSRv0S46_D_2m-AfjGfU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767335196</pqid></control><display><type>article</type><title>Towards graphene plasmon-based free-electron infrared to X-ray sources</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Wong, Liang Jie ; Kaminer, Ido ; Ilic, Ognjen ; Joannopoulos, John D. ; Soljačić, Marin</creator><creatorcontrib>Wong, Liang Jie ; Kaminer, Ido ; Ilic, Ognjen ; Joannopoulos, John D. ; Soljačić, Marin</creatorcontrib><description>Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and
ab initio
simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves.
Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2015.223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/918/1054 ; 639/624/400/1021 ; 639/624/400/1106 ; Applied and Technical Physics ; Free electrons ; Graphene ; Light sources ; Low energy ; Nanostructure ; Photonics ; Photons ; Physics ; Plasmons ; Quantum Physics ; Surface waves</subject><ispartof>Nature photonics, 2016-01, Vol.10 (1), p.46-52</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</citedby><cites>FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wong, Liang Jie</creatorcontrib><creatorcontrib>Kaminer, Ido</creatorcontrib><creatorcontrib>Ilic, Ognjen</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><title>Towards graphene plasmon-based free-electron infrared to X-ray sources</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and
ab initio
simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves.
Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.</description><subject>639/624/399/918/1054</subject><subject>639/624/400/1021</subject><subject>639/624/400/1106</subject><subject>Applied and Technical Physics</subject><subject>Free electrons</subject><subject>Graphene</subject><subject>Light sources</subject><subject>Low energy</subject><subject>Nanostructure</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Quantum Physics</subject><subject>Surface waves</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jwtevGxNMtnd5CjFLyh4qeAtZNNJP9gma7JF_O9NaRERvMwMw-8Nbx4h14xOGAV55_tVGIKfcMqqCedwQkasEaoUUsHpzyyrc3KR0obSChTnI_I4D58mLlKxjKZfocei70zaBl-2JuGicBGxxA7tEIMv1t5FE_N6CMV7Gc1XkcIuWkyX5MyZLuHVsY_J2-PDfPpczl6fXqb3s9KKSgylVKZVAmveSNnSVtjWAQUuc6HSsZoDWKS2bVpXKbASGRow4CQTjAqjYExuD3f7GD52mAa9XSeLXWc8hl3SrFHA6_wnZPTmD7rJXn12l6m6AaiYqjNFD5SNIaWITvdxvTXxSzOq98HqY7B6H6zOwWYJO0hSRv0S46_D_2m-AfjGfU8</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Wong, Liang Jie</creator><creator>Kaminer, Ido</creator><creator>Ilic, Ognjen</creator><creator>Joannopoulos, John D.</creator><creator>Soljačić, Marin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160101</creationdate><title>Towards graphene plasmon-based free-electron infrared to X-ray sources</title><author>Wong, Liang Jie ; Kaminer, Ido ; Ilic, Ognjen ; Joannopoulos, John D. ; Soljačić, Marin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/624/399/918/1054</topic><topic>639/624/400/1021</topic><topic>639/624/400/1106</topic><topic>Applied and Technical Physics</topic><topic>Free electrons</topic><topic>Graphene</topic><topic>Light sources</topic><topic>Low energy</topic><topic>Nanostructure</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Quantum Physics</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Liang Jie</creatorcontrib><creatorcontrib>Kaminer, Ido</creatorcontrib><creatorcontrib>Ilic, Ognjen</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Liang Jie</au><au>Kaminer, Ido</au><au>Ilic, Ognjen</au><au>Joannopoulos, John D.</au><au>Soljačić, Marin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards graphene plasmon-based free-electron infrared to X-ray sources</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>10</volume><issue>1</issue><spage>46</spage><epage>52</epage><pages>46-52</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and
ab initio
simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves.
Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2015.223</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2016-01, Vol.10 (1), p.46-52 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793264883 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/399/918/1054 639/624/400/1021 639/624/400/1106 Applied and Technical Physics Free electrons Graphene Light sources Low energy Nanostructure Photonics Photons Physics Plasmons Quantum Physics Surface waves |
title | Towards graphene plasmon-based free-electron infrared to X-ray sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20graphene%20plasmon-based%20free-electron%20infrared%20to%20X-ray%20sources&rft.jtitle=Nature%20photonics&rft.au=Wong,%20Liang%20Jie&rft.date=2016-01-01&rft.volume=10&rft.issue=1&rft.spage=46&rft.epage=52&rft.pages=46-52&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2015.223&rft_dat=%3Cproquest_cross%3E3960486921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767335196&rft_id=info:pmid/&rfr_iscdi=true |