Towards graphene plasmon-based free-electron infrared to X-ray sources

Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2016-01, Vol.10 (1), p.46-52
Hauptverfasser: Wong, Liang Jie, Kaminer, Ido, Ilic, Ognjen, Joannopoulos, John D., Soljačić, Marin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 46
container_title Nature photonics
container_volume 10
creator Wong, Liang Jie
Kaminer, Ido
Ilic, Ognjen
Joannopoulos, John D.
Soljačić, Marin
description Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and ab initio simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves. Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.
doi_str_mv 10.1038/nphoton.2015.223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793264883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3960486921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwtevGxNMtnd5CjFLyh4qeAtZNNJP9gma7JF_O9NaRERvMwMw-8Nbx4h14xOGAV55_tVGIKfcMqqCedwQkasEaoUUsHpzyyrc3KR0obSChTnI_I4D58mLlKxjKZfocei70zaBl-2JuGicBGxxA7tEIMv1t5FE_N6CMV7Gc1XkcIuWkyX5MyZLuHVsY_J2-PDfPpczl6fXqb3s9KKSgylVKZVAmveSNnSVtjWAQUuc6HSsZoDWKS2bVpXKbASGRow4CQTjAqjYExuD3f7GD52mAa9XSeLXWc8hl3SrFHA6_wnZPTmD7rJXn12l6m6AaiYqjNFD5SNIaWITvdxvTXxSzOq98HqY7B6H6zOwWYJO0hSRv0S46_D_2m-AfjGfU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767335196</pqid></control><display><type>article</type><title>Towards graphene plasmon-based free-electron infrared to X-ray sources</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Wong, Liang Jie ; Kaminer, Ido ; Ilic, Ognjen ; Joannopoulos, John D. ; Soljačić, Marin</creator><creatorcontrib>Wong, Liang Jie ; Kaminer, Ido ; Ilic, Ognjen ; Joannopoulos, John D. ; Soljačić, Marin</creatorcontrib><description>Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and ab initio simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves. Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2015.223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/918/1054 ; 639/624/400/1021 ; 639/624/400/1106 ; Applied and Technical Physics ; Free electrons ; Graphene ; Light sources ; Low energy ; Nanostructure ; Photonics ; Photons ; Physics ; Plasmons ; Quantum Physics ; Surface waves</subject><ispartof>Nature photonics, 2016-01, Vol.10 (1), p.46-52</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</citedby><cites>FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wong, Liang Jie</creatorcontrib><creatorcontrib>Kaminer, Ido</creatorcontrib><creatorcontrib>Ilic, Ognjen</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><title>Towards graphene plasmon-based free-electron infrared to X-ray sources</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and ab initio simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves. Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.</description><subject>639/624/399/918/1054</subject><subject>639/624/400/1021</subject><subject>639/624/400/1106</subject><subject>Applied and Technical Physics</subject><subject>Free electrons</subject><subject>Graphene</subject><subject>Light sources</subject><subject>Low energy</subject><subject>Nanostructure</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Quantum Physics</subject><subject>Surface waves</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jwtevGxNMtnd5CjFLyh4qeAtZNNJP9gma7JF_O9NaRERvMwMw-8Nbx4h14xOGAV55_tVGIKfcMqqCedwQkasEaoUUsHpzyyrc3KR0obSChTnI_I4D58mLlKxjKZfocei70zaBl-2JuGicBGxxA7tEIMv1t5FE_N6CMV7Gc1XkcIuWkyX5MyZLuHVsY_J2-PDfPpczl6fXqb3s9KKSgylVKZVAmveSNnSVtjWAQUuc6HSsZoDWKS2bVpXKbASGRow4CQTjAqjYExuD3f7GD52mAa9XSeLXWc8hl3SrFHA6_wnZPTmD7rJXn12l6m6AaiYqjNFD5SNIaWITvdxvTXxSzOq98HqY7B6H6zOwWYJO0hSRv0S46_D_2m-AfjGfU8</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Wong, Liang Jie</creator><creator>Kaminer, Ido</creator><creator>Ilic, Ognjen</creator><creator>Joannopoulos, John D.</creator><creator>Soljačić, Marin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160101</creationdate><title>Towards graphene plasmon-based free-electron infrared to X-ray sources</title><author>Wong, Liang Jie ; Kaminer, Ido ; Ilic, Ognjen ; Joannopoulos, John D. ; Soljačić, Marin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-89ab94e62788b0b4cbf3032830308f16233ce0cb7bf593c8e1ea3a3f814104a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/624/399/918/1054</topic><topic>639/624/400/1021</topic><topic>639/624/400/1106</topic><topic>Applied and Technical Physics</topic><topic>Free electrons</topic><topic>Graphene</topic><topic>Light sources</topic><topic>Low energy</topic><topic>Nanostructure</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Quantum Physics</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Liang Jie</creatorcontrib><creatorcontrib>Kaminer, Ido</creatorcontrib><creatorcontrib>Ilic, Ognjen</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Liang Jie</au><au>Kaminer, Ido</au><au>Ilic, Ognjen</au><au>Joannopoulos, John D.</au><au>Soljačić, Marin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards graphene plasmon-based free-electron infrared to X-ray sources</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>10</volume><issue>1</issue><spage>46</spage><epage>52</epage><pages>46-52</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme-ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering and the natural sciences. Here, we propose a highly directional, tunable and monochromatic radiation source based on electrons interacting with graphene plasmons. Our complementary analytical theory and ab initio simulations demonstrate that the high momentum of the strongly confined graphene plasmons enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron–plasmon scattering theory is readily extended to other systems in which free electrons interact with surface waves. Scientists theoretically show infrared to X-ray sources that can be implemented on-chip by scattering high-energy electrons with graphene plasmons and predict that they are capable of producing tunable radiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2015.223</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2016-01, Vol.10 (1), p.46-52
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_miscellaneous_1793264883
source Nature; Alma/SFX Local Collection
subjects 639/624/399/918/1054
639/624/400/1021
639/624/400/1106
Applied and Technical Physics
Free electrons
Graphene
Light sources
Low energy
Nanostructure
Photonics
Photons
Physics
Plasmons
Quantum Physics
Surface waves
title Towards graphene plasmon-based free-electron infrared to X-ray sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20graphene%20plasmon-based%20free-electron%20infrared%20to%20X-ray%20sources&rft.jtitle=Nature%20photonics&rft.au=Wong,%20Liang%20Jie&rft.date=2016-01-01&rft.volume=10&rft.issue=1&rft.spage=46&rft.epage=52&rft.pages=46-52&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2015.223&rft_dat=%3Cproquest_cross%3E3960486921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767335196&rft_id=info:pmid/&rfr_iscdi=true