Simply connected varieties in characteristic
We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to $2$ .
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2016-02, Vol.152 (2), p.255-287 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 2 |
container_start_page | 255 |
container_title | Compositio mathematica |
container_volume | 152 |
creator | Esnault, Hélène Srinivas, Vasudevan Bost, Jean-Benoît |
description | We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to
$2$
. |
doi_str_mv | 10.1112/S0010437X15007654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793262203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793262203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1233-56380564772368e4c1b7ed6818488d20f2c6a1ac1513f44c06fc668e037070fe3</originalsourceid><addsrcrecordid>eNplkDtLA0EUhQdRcI3-ALstLVy9d96WEjQKAYso2A3j3Vkc2ZczGyH_3g2xszpwzscpPsYuEW4Qkd9uABCkMO-oAIxW8ogVqAxUykp9zIr9XO33U3aW8xcAcMttwa43sRvbXUlD3weaQl3--BTDFEMuY1_Sp09-rlPMU6RzdtL4NoeLv1ywt8eH1-VTtX5ZPS_v1xUhF6JSWlhQWhrDhbZBEn6YUGuLVlpbc2g4aY-eUKFopCTQDekZBGHAQBPEgl0dfsc0fG9DnlwXM4W29X0YttmhuRNccw5iRvGAUhpyTqFxY4qdTzuH4PZm3D8z4hd9IlPm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793262203</pqid></control><display><type>article</type><title>Simply connected varieties in characteristic</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Esnault, Hélène ; Srinivas, Vasudevan ; Bost, Jean-Benoît</creator><creatorcontrib>Esnault, Hélène ; Srinivas, Vasudevan ; Bost, Jean-Benoît</creatorcontrib><description>We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to
$2$
.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X15007654</identifier><language>eng</language><subject>Algebra ; Boundaries ; Boundary layer ; Bundles ; Closures ; Mathematical analysis</subject><ispartof>Compositio mathematica, 2016-02, Vol.152 (2), p.255-287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1233-56380564772368e4c1b7ed6818488d20f2c6a1ac1513f44c06fc668e037070fe3</citedby><cites>FETCH-LOGICAL-c1233-56380564772368e4c1b7ed6818488d20f2c6a1ac1513f44c06fc668e037070fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Esnault, Hélène</creatorcontrib><creatorcontrib>Srinivas, Vasudevan</creatorcontrib><creatorcontrib>Bost, Jean-Benoît</creatorcontrib><title>Simply connected varieties in characteristic</title><title>Compositio mathematica</title><description>We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to
$2$
.</description><subject>Algebra</subject><subject>Boundaries</subject><subject>Boundary layer</subject><subject>Bundles</subject><subject>Closures</subject><subject>Mathematical analysis</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNplkDtLA0EUhQdRcI3-ALstLVy9d96WEjQKAYso2A3j3Vkc2ZczGyH_3g2xszpwzscpPsYuEW4Qkd9uABCkMO-oAIxW8ogVqAxUykp9zIr9XO33U3aW8xcAcMttwa43sRvbXUlD3weaQl3--BTDFEMuY1_Sp09-rlPMU6RzdtL4NoeLv1ywt8eH1-VTtX5ZPS_v1xUhF6JSWlhQWhrDhbZBEn6YUGuLVlpbc2g4aY-eUKFopCTQDekZBGHAQBPEgl0dfsc0fG9DnlwXM4W29X0YttmhuRNccw5iRvGAUhpyTqFxY4qdTzuH4PZm3D8z4hd9IlPm</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Esnault, Hélène</creator><creator>Srinivas, Vasudevan</creator><creator>Bost, Jean-Benoît</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201602</creationdate><title>Simply connected varieties in characteristic</title><author>Esnault, Hélène ; Srinivas, Vasudevan ; Bost, Jean-Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1233-56380564772368e4c1b7ed6818488d20f2c6a1ac1513f44c06fc668e037070fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Boundaries</topic><topic>Boundary layer</topic><topic>Bundles</topic><topic>Closures</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esnault, Hélène</creatorcontrib><creatorcontrib>Srinivas, Vasudevan</creatorcontrib><creatorcontrib>Bost, Jean-Benoît</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esnault, Hélène</au><au>Srinivas, Vasudevan</au><au>Bost, Jean-Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simply connected varieties in characteristic</atitle><jtitle>Compositio mathematica</jtitle><date>2016-02</date><risdate>2016</risdate><volume>152</volume><issue>2</issue><spage>255</spage><epage>287</epage><pages>255-287</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to
$2$
.</abstract><doi>10.1112/S0010437X15007654</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2016-02, Vol.152 (2), p.255-287 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793262203 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | Algebra Boundaries Boundary layer Bundles Closures Mathematical analysis |
title | Simply connected varieties in characteristic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simply%20connected%20varieties%20in%20characteristic&rft.jtitle=Compositio%20mathematica&rft.au=Esnault,%20H%C3%A9l%C3%A8ne&rft.date=2016-02&rft.volume=152&rft.issue=2&rft.spage=255&rft.epage=287&rft.pages=255-287&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X15007654&rft_dat=%3Cproquest_cross%3E1793262203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793262203&rft_id=info:pmid/&rfr_iscdi=true |