Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction
An in situ X-ray nanodiffraction technique allows for the real-time study of the photoinduced chemical reaction to produce Ag from AgBr, and can spatially resolve structural changes at the submicrometre scale with a time resolution of 5 ms. In situ X-ray diffraction (XRD) and transmission electron m...
Gespeichert in:
Veröffentlicht in: | Nature materials 2015-07, Vol.14 (7), p.691-695 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 695 |
---|---|
container_issue | 7 |
container_start_page | 691 |
container_title | Nature materials |
container_volume | 14 |
creator | Huang, Zhifeng Bartels, Matthias Xu, Rui Osterhoff, Markus Kalbfleisch, Sebastian Sprung, Michael Suzuki, Akihiro Takahashi, Yukio Blanton, Thomas N. Salditt, Tim Miao, Jianwei |
description | An
in situ
X-ray nanodiffraction technique allows for the real-time study of the photoinduced chemical reaction to produce Ag from AgBr, and can spatially resolve structural changes at the submicrometre scale with a time resolution of 5 ms.
In situ
X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics
1
,
2
,
3
,
4
,
5
,
6
. A major limitation of
in situ
XRD and TEM is a compromise that has to be made between spatial and temporal resolution
1
,
2
,
3
,
4
,
5
,
6
. Here, we report the development of
in situ
X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br
−
+
hv
→ Br + e
−
and e
−
+ Ag
+
→ Ag
0
. The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s
−1
and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience. |
doi_str_mv | 10.1038/nmat4311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793261235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793261235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-46026ce537ccb9f32fa1a5b7358ee6613d2816aa9c71ab56169ec1a4e24e0b5b3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EoqUg9QkqS1zoYanHjp3kWFW0IFXiAlJv0cSZtK4Se2s7iH0bnoUnw6vdUtQLJ488n76Z0c_YMYiPIFRz5mfMlQJ4wQ6hqs2qMka83NcAUh6wNyndCyFBa_OaHUgjtKqNOGQ_ryI6z2PImF3wHP3AJ8zZWeIDjSHOu_9hic7f8vVdyMH5YbE0cHtHs7M48Uhot1Qq1Q_CqfT6DXf-96_k8sJvVhE33KMPgxvHuGPfslcjTone7d8j9v3y07eLz6vrr1dfLs6vV1ZryOUSIY2lsq21fTsqOSKg7mulGyJjQA2yAYPY2hqw1wZMSxawIlmR6HWvjtiHnXcdw8NCKXezS5amCT2FJXVQt0oakEr_HzUtCFDGtAV9_wy9D0v05ZAiNLVoGlG3T0IbQ0qRxm4d3Yxx04HotsF1j8EV9GQvXPqZhr_gY1IFON0Bab1NguI_E5_L_gDWAKNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767088079</pqid></control><display><type>article</type><title>Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Huang, Zhifeng ; Bartels, Matthias ; Xu, Rui ; Osterhoff, Markus ; Kalbfleisch, Sebastian ; Sprung, Michael ; Suzuki, Akihiro ; Takahashi, Yukio ; Blanton, Thomas N. ; Salditt, Tim ; Miao, Jianwei</creator><creatorcontrib>Huang, Zhifeng ; Bartels, Matthias ; Xu, Rui ; Osterhoff, Markus ; Kalbfleisch, Sebastian ; Sprung, Michael ; Suzuki, Akihiro ; Takahashi, Yukio ; Blanton, Thomas N. ; Salditt, Tim ; Miao, Jianwei</creatorcontrib><description>An
in situ
X-ray nanodiffraction technique allows for the real-time study of the photoinduced chemical reaction to produce Ag from AgBr, and can spatially resolve structural changes at the submicrometre scale with a time resolution of 5 ms.
In situ
X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics
1
,
2
,
3
,
4
,
5
,
6
. A major limitation of
in situ
XRD and TEM is a compromise that has to be made between spatial and temporal resolution
1
,
2
,
3
,
4
,
5
,
6
. Here, we report the development of
in situ
X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br
−
+
hv
→ Br + e
−
and e
−
+ Ag
+
→ Ag
0
. The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s
−1
and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4311</identifier><identifier>PMID: 26053760</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/930/12 ; 639/925/357 ; Biomaterials ; Chemical reactions ; Condensed Matter Physics ; Crystal growth ; Deformation ; Diffraction ; Diffraction patterns ; Grains ; Lattices ; letter ; Materials Science ; Nanomaterials ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Temporal resolution ; Transmission electron microscopy ; X-ray diffraction ; X-rays</subject><ispartof>Nature materials, 2015-07, Vol.14 (7), p.691-695</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-46026ce537ccb9f32fa1a5b7358ee6613d2816aa9c71ab56169ec1a4e24e0b5b3</citedby><cites>FETCH-LOGICAL-c551t-46026ce537ccb9f32fa1a5b7358ee6613d2816aa9c71ab56169ec1a4e24e0b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4311$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4311$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26053760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Bartels, Matthias</creatorcontrib><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Osterhoff, Markus</creatorcontrib><creatorcontrib>Kalbfleisch, Sebastian</creatorcontrib><creatorcontrib>Sprung, Michael</creatorcontrib><creatorcontrib>Suzuki, Akihiro</creatorcontrib><creatorcontrib>Takahashi, Yukio</creatorcontrib><creatorcontrib>Blanton, Thomas N.</creatorcontrib><creatorcontrib>Salditt, Tim</creatorcontrib><creatorcontrib>Miao, Jianwei</creatorcontrib><title>Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>An
in situ
X-ray nanodiffraction technique allows for the real-time study of the photoinduced chemical reaction to produce Ag from AgBr, and can spatially resolve structural changes at the submicrometre scale with a time resolution of 5 ms.
In situ
X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics
1
,
2
,
3
,
4
,
5
,
6
. A major limitation of
in situ
XRD and TEM is a compromise that has to be made between spatial and temporal resolution
1
,
2
,
3
,
4
,
5
,
6
. Here, we report the development of
in situ
X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br
−
+
hv
→ Br + e
−
and e
−
+ Ag
+
→ Ag
0
. The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s
−1
and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.</description><subject>639/301/930/12</subject><subject>639/925/357</subject><subject>Biomaterials</subject><subject>Chemical reactions</subject><subject>Condensed Matter Physics</subject><subject>Crystal growth</subject><subject>Deformation</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Grains</subject><subject>Lattices</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Temporal resolution</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFu1DAQhi0EoqUg9QkqS1zoYanHjp3kWFW0IFXiAlJv0cSZtK4Se2s7iH0bnoUnw6vdUtQLJ488n76Z0c_YMYiPIFRz5mfMlQJ4wQ6hqs2qMka83NcAUh6wNyndCyFBa_OaHUgjtKqNOGQ_ryI6z2PImF3wHP3AJ8zZWeIDjSHOu_9hic7f8vVdyMH5YbE0cHtHs7M48Uhot1Qq1Q_CqfT6DXf-96_k8sJvVhE33KMPgxvHuGPfslcjTone7d8j9v3y07eLz6vrr1dfLs6vV1ZryOUSIY2lsq21fTsqOSKg7mulGyJjQA2yAYPY2hqw1wZMSxawIlmR6HWvjtiHnXcdw8NCKXezS5amCT2FJXVQt0oakEr_HzUtCFDGtAV9_wy9D0v05ZAiNLVoGlG3T0IbQ0qRxm4d3Yxx04HotsF1j8EV9GQvXPqZhr_gY1IFON0Bab1NguI_E5_L_gDWAKNq</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Huang, Zhifeng</creator><creator>Bartels, Matthias</creator><creator>Xu, Rui</creator><creator>Osterhoff, Markus</creator><creator>Kalbfleisch, Sebastian</creator><creator>Sprung, Michael</creator><creator>Suzuki, Akihiro</creator><creator>Takahashi, Yukio</creator><creator>Blanton, Thomas N.</creator><creator>Salditt, Tim</creator><creator>Miao, Jianwei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction</title><author>Huang, Zhifeng ; Bartels, Matthias ; Xu, Rui ; Osterhoff, Markus ; Kalbfleisch, Sebastian ; Sprung, Michael ; Suzuki, Akihiro ; Takahashi, Yukio ; Blanton, Thomas N. ; Salditt, Tim ; Miao, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-46026ce537ccb9f32fa1a5b7358ee6613d2816aa9c71ab56169ec1a4e24e0b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/930/12</topic><topic>639/925/357</topic><topic>Biomaterials</topic><topic>Chemical reactions</topic><topic>Condensed Matter Physics</topic><topic>Crystal growth</topic><topic>Deformation</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Grains</topic><topic>Lattices</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Temporal resolution</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Bartels, Matthias</creatorcontrib><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Osterhoff, Markus</creatorcontrib><creatorcontrib>Kalbfleisch, Sebastian</creatorcontrib><creatorcontrib>Sprung, Michael</creatorcontrib><creatorcontrib>Suzuki, Akihiro</creatorcontrib><creatorcontrib>Takahashi, Yukio</creatorcontrib><creatorcontrib>Blanton, Thomas N.</creatorcontrib><creatorcontrib>Salditt, Tim</creatorcontrib><creatorcontrib>Miao, Jianwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhifeng</au><au>Bartels, Matthias</au><au>Xu, Rui</au><au>Osterhoff, Markus</au><au>Kalbfleisch, Sebastian</au><au>Sprung, Michael</au><au>Suzuki, Akihiro</au><au>Takahashi, Yukio</au><au>Blanton, Thomas N.</au><au>Salditt, Tim</au><au>Miao, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>14</volume><issue>7</issue><spage>691</spage><epage>695</epage><pages>691-695</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>An
in situ
X-ray nanodiffraction technique allows for the real-time study of the photoinduced chemical reaction to produce Ag from AgBr, and can spatially resolve structural changes at the submicrometre scale with a time resolution of 5 ms.
In situ
X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics
1
,
2
,
3
,
4
,
5
,
6
. A major limitation of
in situ
XRD and TEM is a compromise that has to be made between spatial and temporal resolution
1
,
2
,
3
,
4
,
5
,
6
. Here, we report the development of
in situ
X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br
−
+
hv
→ Br + e
−
and e
−
+ Ag
+
→ Ag
0
. The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s
−1
and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26053760</pmid><doi>10.1038/nmat4311</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2015-07, Vol.14 (7), p.691-695 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793261235 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/930/12 639/925/357 Biomaterials Chemical reactions Condensed Matter Physics Crystal growth Deformation Diffraction Diffraction patterns Grains Lattices letter Materials Science Nanomaterials Nanotechnology Optical and Electronic Materials Physics Temporal resolution Transmission electron microscopy X-ray diffraction X-rays |
title | Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20rotation%20and%20lattice%20deformation%20during%20photoinduced%20chemical%20reactions%20revealed%20by%20in%C2%A0situ%20X-ray%20nanodiffraction&rft.jtitle=Nature%20materials&rft.au=Huang,%20Zhifeng&rft.date=2015-07-01&rft.volume=14&rft.issue=7&rft.spage=691&rft.epage=695&rft.pages=691-695&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4311&rft_dat=%3Cproquest_cross%3E1793261235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767088079&rft_id=info:pmid/26053760&rfr_iscdi=true |