Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform

Low-cost genome sequencing gives unprecedented complete information about the genetic structure of populations, and a population graph captures the variations between many individuals of a population. Recently, Marcus et al. proposed to use a compressed de Bruijn graph for representing an entire pop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2016-02, Vol.32 (4), p.497-504
Hauptverfasser: Baier, Uwe, Beller, Timo, Ohlebusch, Enno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 4
container_start_page 497
container_title Bioinformatics
container_volume 32
creator Baier, Uwe
Beller, Timo
Ohlebusch, Enno
description Low-cost genome sequencing gives unprecedented complete information about the genetic structure of populations, and a population graph captures the variations between many individuals of a population. Recently, Marcus et al. proposed to use a compressed de Bruijn graph for representing an entire population of genomes. They devised an O(n log g) time algorithm called splitMEM that constructs this graph directly (i.e. without using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is the length of the longest genome. Since the applicability of their algorithm is limited to rather small datasets, there is a strong need for space-efficient construction algorithms. We present two algorithms that outperform splitMEM in theory and in practice. The first implements a novel linear-time suffix tree algorithm by means of a compressed suffix tree. The second algorithm uses the Burrows-Wheeler transform to build the compressed de Bruijn graph in [Formula: see text] time, where σ is the size of the alphabet. To demonstrate the scalability of the algorithms, we applied it to seven human genomes. https://www.uni-ulm.de/in/theo/research/seqana/.
doi_str_mv 10.1093/bioinformatics/btv603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793260223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762966728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-27f24c32f1503649a8ecb5639cc628a83247fb71daf98a56ae93f7760ca85ddd3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMorq7-BKVHL9V8NEl7VPELBC-KF6Gk6cSNtE3NtK77762sCt72NAPzvDMDDyFHjJ4yWoizygffuRBbM3iLZ9XwoajYIntMKJ1mOWPbfz0VM7KP-EYplVSqXTLjStKMZdkeebmJpl94a5qkN136Cl1oITGdaVboMVn6YZHY0PYREKFOcHTOfyZDBMCJqpNhAcnFGGNYYvq8AGggTlPT4fdrB2THmQbh8KfOydP11ePlbXr_cHN3eX6f2ozzIeXa8cwK7pikQmWFycFWUonCWsVzkwueaVdpVhtX5EYqA4VwWitqTS7ruhZzcrLe28fwPgIOZevRQtOYDsKIJdOF4IpyLjZAVS4101RugvJCKc3zCZVr1MaAGMGVffStiauS0fJbV_lfV7nWNeWOf06MVQv1X-rXj_gCBcaXGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762966728</pqid></control><display><type>article</type><title>Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Baier, Uwe ; Beller, Timo ; Ohlebusch, Enno</creator><creatorcontrib>Baier, Uwe ; Beller, Timo ; Ohlebusch, Enno</creatorcontrib><description>Low-cost genome sequencing gives unprecedented complete information about the genetic structure of populations, and a population graph captures the variations between many individuals of a population. Recently, Marcus et al. proposed to use a compressed de Bruijn graph for representing an entire population of genomes. They devised an O(n log g) time algorithm called splitMEM that constructs this graph directly (i.e. without using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is the length of the longest genome. Since the applicability of their algorithm is limited to rather small datasets, there is a strong need for space-efficient construction algorithms. We present two algorithms that outperform splitMEM in theory and in practice. The first implements a novel linear-time suffix tree algorithm by means of a compressed suffix tree. The second algorithm uses the Burrows-Wheeler transform to build the compressed de Bruijn graph in [Formula: see text] time, where σ is the size of the alphabet. To demonstrate the scalability of the algorithms, we applied it to seven human genomes. https://www.uni-ulm.de/in/theo/research/seqana/.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btv603</identifier><identifier>PMID: 26504144</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Bioinformatics ; Compressed ; Computational Biology - methods ; Computer Simulation ; Construction ; Genome, Human ; Genomes ; Genomics - methods ; Graphs ; Humans ; Models, Genetic ; Populations ; Sequence Analysis, DNA - methods ; Suffix trees</subject><ispartof>Bioinformatics, 2016-02, Vol.32 (4), p.497-504</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-27f24c32f1503649a8ecb5639cc628a83247fb71daf98a56ae93f7760ca85ddd3</citedby><cites>FETCH-LOGICAL-c422t-27f24c32f1503649a8ecb5639cc628a83247fb71daf98a56ae93f7760ca85ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26504144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baier, Uwe</creatorcontrib><creatorcontrib>Beller, Timo</creatorcontrib><creatorcontrib>Ohlebusch, Enno</creatorcontrib><title>Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Low-cost genome sequencing gives unprecedented complete information about the genetic structure of populations, and a population graph captures the variations between many individuals of a population. Recently, Marcus et al. proposed to use a compressed de Bruijn graph for representing an entire population of genomes. They devised an O(n log g) time algorithm called splitMEM that constructs this graph directly (i.e. without using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is the length of the longest genome. Since the applicability of their algorithm is limited to rather small datasets, there is a strong need for space-efficient construction algorithms. We present two algorithms that outperform splitMEM in theory and in practice. The first implements a novel linear-time suffix tree algorithm by means of a compressed suffix tree. The second algorithm uses the Burrows-Wheeler transform to build the compressed de Bruijn graph in [Formula: see text] time, where σ is the size of the alphabet. To demonstrate the scalability of the algorithms, we applied it to seven human genomes. https://www.uni-ulm.de/in/theo/research/seqana/.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Compressed</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Graphs</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Populations</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Suffix trees</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMorq7-BKVHL9V8NEl7VPELBC-KF6Gk6cSNtE3NtK77762sCt72NAPzvDMDDyFHjJ4yWoizygffuRBbM3iLZ9XwoajYIntMKJ1mOWPbfz0VM7KP-EYplVSqXTLjStKMZdkeebmJpl94a5qkN136Cl1oITGdaVboMVn6YZHY0PYREKFOcHTOfyZDBMCJqpNhAcnFGGNYYvq8AGggTlPT4fdrB2THmQbh8KfOydP11ePlbXr_cHN3eX6f2ozzIeXa8cwK7pikQmWFycFWUonCWsVzkwueaVdpVhtX5EYqA4VwWitqTS7ruhZzcrLe28fwPgIOZevRQtOYDsKIJdOF4IpyLjZAVS4101RugvJCKc3zCZVr1MaAGMGVffStiauS0fJbV_lfV7nWNeWOf06MVQv1X-rXj_gCBcaXGQ</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Baier, Uwe</creator><creator>Beller, Timo</creator><creator>Ohlebusch, Enno</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160215</creationdate><title>Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform</title><author>Baier, Uwe ; Beller, Timo ; Ohlebusch, Enno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-27f24c32f1503649a8ecb5639cc628a83247fb71daf98a56ae93f7760ca85ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Compressed</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Graphs</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Populations</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Suffix trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baier, Uwe</creatorcontrib><creatorcontrib>Beller, Timo</creatorcontrib><creatorcontrib>Ohlebusch, Enno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baier, Uwe</au><au>Beller, Timo</au><au>Ohlebusch, Enno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2016-02-15</date><risdate>2016</risdate><volume>32</volume><issue>4</issue><spage>497</spage><epage>504</epage><pages>497-504</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Low-cost genome sequencing gives unprecedented complete information about the genetic structure of populations, and a population graph captures the variations between many individuals of a population. Recently, Marcus et al. proposed to use a compressed de Bruijn graph for representing an entire population of genomes. They devised an O(n log g) time algorithm called splitMEM that constructs this graph directly (i.e. without using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is the length of the longest genome. Since the applicability of their algorithm is limited to rather small datasets, there is a strong need for space-efficient construction algorithms. We present two algorithms that outperform splitMEM in theory and in practice. The first implements a novel linear-time suffix tree algorithm by means of a compressed suffix tree. The second algorithm uses the Burrows-Wheeler transform to build the compressed de Bruijn graph in [Formula: see text] time, where σ is the size of the alphabet. To demonstrate the scalability of the algorithms, we applied it to seven human genomes. https://www.uni-ulm.de/in/theo/research/seqana/.</abstract><cop>England</cop><pmid>26504144</pmid><doi>10.1093/bioinformatics/btv603</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2016-02, Vol.32 (4), p.497-504
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_proquest_miscellaneous_1793260223
source MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Bioinformatics
Compressed
Computational Biology - methods
Computer Simulation
Construction
Genome, Human
Genomes
Genomics - methods
Graphs
Humans
Models, Genetic
Populations
Sequence Analysis, DNA - methods
Suffix trees
title Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphical%20pan-genome%20analysis%20with%20compressed%20suffix%20trees%20and%20the%20Burrows-Wheeler%20transform&rft.jtitle=Bioinformatics&rft.au=Baier,%20Uwe&rft.date=2016-02-15&rft.volume=32&rft.issue=4&rft.spage=497&rft.epage=504&rft.pages=497-504&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv603&rft_dat=%3Cproquest_cross%3E1762966728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762966728&rft_id=info:pmid/26504144&rfr_iscdi=true