Patient admission planning using Approximate Dynamic Programming
Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans....
Gespeichert in:
Veröffentlicht in: | Flexible services and manufacturing journal 2016-06, Vol.28 (1-2), p.30-61 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1-2 |
container_start_page | 30 |
container_title | Flexible services and manufacturing journal |
container_volume | 28 |
creator | Hulshof, Peter J. H. Mes, Martijn R. K. Boucherie, Richard J. Hans, Erwin W. |
description | Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans. Our method is developed in an Approximate Dynamic Programming (ADP) framework and copes with multiple resources, multiple time periods and multiple patient groups with uncertain treatment paths and an uncertain number of arrivals in each time period. As such, the method enables integrated decision making for a network of hospital departments and resources. Computational results indicate that the ADP approach provides an accurate approximation of the value functions, and that it is suitable for large problem instances at hospitals, in which the ADP approach performs significantly better than two other heuristic approaches. Our ADP algorithm is generic, as various cost functions and basis functions can be used in various hospital settings. |
doi_str_mv | 10.1007/s10696-015-9219-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793259158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793259158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-da8270318dc541a951b87c43169a519db600a7a6c511ea6f5cf220d10b15b0743</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FL16iM2mTNjeX9S8suAc9hzRNly7btCYtuN_eLBURwctkIL_3ePMIuUS4QYD8NiAIKSggp5KhpHhEZihTQQWXcPyzF-yUnIWwBRAMkc3I3VoPjXVDoqu2CaHpXNLvtHON2yRjOMxF3_vus2n1YJP7vdNtY5K17zZet238Pycntd4Fe_H9zsn748Pb8pmuXp9elosVNZzBQCtdsBxSLCrDM9SSY1nkJktRSM1RVqUA0LkWhiNaLWpuasagQiiRl5Bn6ZxcT74xzcdow6BiXmN3MaztxqAwlynjEnkR0as_6LYbvYvpIiUyVkQ7HimcKOO7ELytVe_jlX6vENShUzV1qmKn6tCpwqhhkyZE1m2s_-X8r-gLffp4Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764287435</pqid></control><display><type>article</type><title>Patient admission planning using Approximate Dynamic Programming</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hulshof, Peter J. H. ; Mes, Martijn R. K. ; Boucherie, Richard J. ; Hans, Erwin W.</creator><creatorcontrib>Hulshof, Peter J. H. ; Mes, Martijn R. K. ; Boucherie, Richard J. ; Hans, Erwin W.</creatorcontrib><description>Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans. Our method is developed in an Approximate Dynamic Programming (ADP) framework and copes with multiple resources, multiple time periods and multiple patient groups with uncertain treatment paths and an uncertain number of arrivals in each time period. As such, the method enables integrated decision making for a network of hospital departments and resources. Computational results indicate that the ADP approach provides an accurate approximation of the value functions, and that it is suitable for large problem instances at hospitals, in which the ADP approach performs significantly better than two other heuristic approaches. Our ADP algorithm is generic, as various cost functions and basis functions can be used in various hospital settings.</description><identifier>ISSN: 1936-6582</identifier><identifier>EISSN: 1936-6590</identifier><identifier>DOI: 10.1007/s10696-015-9219-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Allocations ; Approximation ; Decision making ; Dynamic programming ; Engineering ; Hospitals ; Inventory control ; Machines ; Manufacturing ; Mathematical analysis ; Mathematical programming ; Operations Management ; Operations Research/Decision Theory ; Outpatient care facilities ; Patient admissions ; Patients ; Planning ; Processes ; Resource allocation ; Strategic planning ; Studies</subject><ispartof>Flexible services and manufacturing journal, 2016-06, Vol.28 (1-2), p.30-61</ispartof><rights>The Author(s) 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-da8270318dc541a951b87c43169a519db600a7a6c511ea6f5cf220d10b15b0743</citedby><cites>FETCH-LOGICAL-c520t-da8270318dc541a951b87c43169a519db600a7a6c511ea6f5cf220d10b15b0743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10696-015-9219-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10696-015-9219-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hulshof, Peter J. H.</creatorcontrib><creatorcontrib>Mes, Martijn R. K.</creatorcontrib><creatorcontrib>Boucherie, Richard J.</creatorcontrib><creatorcontrib>Hans, Erwin W.</creatorcontrib><title>Patient admission planning using Approximate Dynamic Programming</title><title>Flexible services and manufacturing journal</title><addtitle>Flex Serv Manuf J</addtitle><description>Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans. Our method is developed in an Approximate Dynamic Programming (ADP) framework and copes with multiple resources, multiple time periods and multiple patient groups with uncertain treatment paths and an uncertain number of arrivals in each time period. As such, the method enables integrated decision making for a network of hospital departments and resources. Computational results indicate that the ADP approach provides an accurate approximation of the value functions, and that it is suitable for large problem instances at hospitals, in which the ADP approach performs significantly better than two other heuristic approaches. Our ADP algorithm is generic, as various cost functions and basis functions can be used in various hospital settings.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Approximation</subject><subject>Decision making</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Hospitals</subject><subject>Inventory control</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Operations Management</subject><subject>Operations Research/Decision Theory</subject><subject>Outpatient care facilities</subject><subject>Patient admissions</subject><subject>Patients</subject><subject>Planning</subject><subject>Processes</subject><subject>Resource allocation</subject><subject>Strategic planning</subject><subject>Studies</subject><issn>1936-6582</issn><issn>1936-6590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8FL16iM2mTNjeX9S8suAc9hzRNly7btCYtuN_eLBURwctkIL_3ePMIuUS4QYD8NiAIKSggp5KhpHhEZihTQQWXcPyzF-yUnIWwBRAMkc3I3VoPjXVDoqu2CaHpXNLvtHON2yRjOMxF3_vus2n1YJP7vdNtY5K17zZet238Pycntd4Fe_H9zsn748Pb8pmuXp9elosVNZzBQCtdsBxSLCrDM9SSY1nkJktRSM1RVqUA0LkWhiNaLWpuasagQiiRl5Bn6ZxcT74xzcdow6BiXmN3MaztxqAwlynjEnkR0as_6LYbvYvpIiUyVkQ7HimcKOO7ELytVe_jlX6vENShUzV1qmKn6tCpwqhhkyZE1m2s_-X8r-gLffp4Hg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Hulshof, Peter J. H.</creator><creator>Mes, Martijn R. K.</creator><creator>Boucherie, Richard J.</creator><creator>Hans, Erwin W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160601</creationdate><title>Patient admission planning using Approximate Dynamic Programming</title><author>Hulshof, Peter J. H. ; Mes, Martijn R. K. ; Boucherie, Richard J. ; Hans, Erwin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-da8270318dc541a951b87c43169a519db600a7a6c511ea6f5cf220d10b15b0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Approximation</topic><topic>Decision making</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Hospitals</topic><topic>Inventory control</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Operations Management</topic><topic>Operations Research/Decision Theory</topic><topic>Outpatient care facilities</topic><topic>Patient admissions</topic><topic>Patients</topic><topic>Planning</topic><topic>Processes</topic><topic>Resource allocation</topic><topic>Strategic planning</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hulshof, Peter J. H.</creatorcontrib><creatorcontrib>Mes, Martijn R. K.</creatorcontrib><creatorcontrib>Boucherie, Richard J.</creatorcontrib><creatorcontrib>Hans, Erwin W.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Flexible services and manufacturing journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hulshof, Peter J. H.</au><au>Mes, Martijn R. K.</au><au>Boucherie, Richard J.</au><au>Hans, Erwin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient admission planning using Approximate Dynamic Programming</atitle><jtitle>Flexible services and manufacturing journal</jtitle><stitle>Flex Serv Manuf J</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>28</volume><issue>1-2</issue><spage>30</spage><epage>61</epage><pages>30-61</pages><issn>1936-6582</issn><eissn>1936-6590</eissn><abstract>Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans. Our method is developed in an Approximate Dynamic Programming (ADP) framework and copes with multiple resources, multiple time periods and multiple patient groups with uncertain treatment paths and an uncertain number of arrivals in each time period. As such, the method enables integrated decision making for a network of hospital departments and resources. Computational results indicate that the ADP approach provides an accurate approximation of the value functions, and that it is suitable for large problem instances at hospitals, in which the ADP approach performs significantly better than two other heuristic approaches. Our ADP algorithm is generic, as various cost functions and basis functions can be used in various hospital settings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10696-015-9219-1</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-6582 |
ispartof | Flexible services and manufacturing journal, 2016-06, Vol.28 (1-2), p.30-61 |
issn | 1936-6582 1936-6590 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793259158 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Allocations Approximation Decision making Dynamic programming Engineering Hospitals Inventory control Machines Manufacturing Mathematical analysis Mathematical programming Operations Management Operations Research/Decision Theory Outpatient care facilities Patient admissions Patients Planning Processes Resource allocation Strategic planning Studies |
title | Patient admission planning using Approximate Dynamic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient%20admission%20planning%20using%20Approximate%20Dynamic%20Programming&rft.jtitle=Flexible%20services%20and%20manufacturing%20journal&rft.au=Hulshof,%20Peter%20J.%20H.&rft.date=2016-06-01&rft.volume=28&rft.issue=1-2&rft.spage=30&rft.epage=61&rft.pages=30-61&rft.issn=1936-6582&rft.eissn=1936-6590&rft_id=info:doi/10.1007/s10696-015-9219-1&rft_dat=%3Cproquest_cross%3E1793259158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764287435&rft_id=info:pmid/&rfr_iscdi=true |