Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns

Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2016-02, Vol.49 (2), p.573-584
Hauptverfasser: Kim, Hyung-Mok, Rutqvist, Jonny, Kim, Hyunwoo, Park, Dohyun, Ryu, Dong-Woo, Park, Eui-Seob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 2
container_start_page 573
container_title Rock mechanics and rock engineering
container_volume 49
creator Kim, Hyung-Mok
Rutqvist, Jonny
Kim, Hyunwoo
Park, Dohyun
Ryu, Dong-Woo
Park, Eui-Seob
description Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.
doi_str_mv 10.1007/s00603-015-0761-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793259129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3948347491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</originalsourceid><addsrcrecordid>eNp10ctKAzEUBuAgCtbqA7gLuHEzmttMZpaltipUBLXgLqSTMyW9JDWZEfr2ZqwLEVwFku8_hPMjdEnJDSVE3kZCCsIzQvOMyIJm8ggNqOAiEzl_P0YDIhnPWMHZKTqLcUVIepTlAPmptpsuAH7yzrY-WLfE2hk8A73WS8B30ELdWu9w4wOeOwNhGXyXxGvSvfANHvvtLkCMYPDIBjxxCe2xdXhmXbp78fUaj_UnBBfP0UmjNxEufs4hmk8nb-OHbPZ8_zgezTItBGszxqVhi6IxXNCKG96wUlAgFQjGdGlMrTkxRV7JRU0X9aKuyibPm9JARXnBZMmH6Powdxf8RwexVVsba9hstAPfRUVlxVleUVYlevWHrnwXXPpdUoVgZcm-FT2oOvgYAzRqF-xWh72iRPUVqEMFKlWg-gqUTBl2yMRdv1gIvyb_G_oCb0aI1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764288229</pqid></control><display><type>article</type><title>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</title><source>SpringerLink Journals</source><creator>Kim, Hyung-Mok ; Rutqvist, Jonny ; Kim, Hyunwoo ; Park, Dohyun ; Ryu, Dong-Woo ; Park, Eui-Seob</creator><creatorcontrib>Kim, Hyung-Mok ; Rutqvist, Jonny ; Kim, Hyunwoo ; Park, Dohyun ; Ryu, Dong-Woo ; Park, Eui-Seob</creatorcontrib><description>Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-015-0761-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Air leakage ; Caverns ; Caves ; Civil Engineering ; Compressed air ; Earth and Environmental Science ; Earth Sciences ; Energy storage ; Failure analysis ; Geophysics/Geodesy ; Leak detection ; Leakage ; Liners ; Mathematical models ; Mechanical failure ; Monitoring ; Monitoring methods ; Monitoring systems ; Original Paper ; Rock ; Rocks ; Underground ; Underground storage</subject><ispartof>Rock mechanics and rock engineering, 2016-02, Vol.49 (2), p.573-584</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>Springer-Verlag Wien 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</citedby><cites>FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-015-0761-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-015-0761-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Hyung-Mok</creatorcontrib><creatorcontrib>Rutqvist, Jonny</creatorcontrib><creatorcontrib>Kim, Hyunwoo</creatorcontrib><creatorcontrib>Park, Dohyun</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Park, Eui-Seob</creatorcontrib><title>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.</description><subject>Air leakage</subject><subject>Caverns</subject><subject>Caves</subject><subject>Civil Engineering</subject><subject>Compressed air</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy storage</subject><subject>Failure analysis</subject><subject>Geophysics/Geodesy</subject><subject>Leak detection</subject><subject>Leakage</subject><subject>Liners</subject><subject>Mathematical models</subject><subject>Mechanical failure</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Monitoring systems</subject><subject>Original Paper</subject><subject>Rock</subject><subject>Rocks</subject><subject>Underground</subject><subject>Underground storage</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp10ctKAzEUBuAgCtbqA7gLuHEzmttMZpaltipUBLXgLqSTMyW9JDWZEfr2ZqwLEVwFku8_hPMjdEnJDSVE3kZCCsIzQvOMyIJm8ggNqOAiEzl_P0YDIhnPWMHZKTqLcUVIepTlAPmptpsuAH7yzrY-WLfE2hk8A73WS8B30ELdWu9w4wOeOwNhGXyXxGvSvfANHvvtLkCMYPDIBjxxCe2xdXhmXbp78fUaj_UnBBfP0UmjNxEufs4hmk8nb-OHbPZ8_zgezTItBGszxqVhi6IxXNCKG96wUlAgFQjGdGlMrTkxRV7JRU0X9aKuyibPm9JARXnBZMmH6Powdxf8RwexVVsba9hstAPfRUVlxVleUVYlevWHrnwXXPpdUoVgZcm-FT2oOvgYAzRqF-xWh72iRPUVqEMFKlWg-gqUTBl2yMRdv1gIvyb_G_oCb0aI1g</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Kim, Hyung-Mok</creator><creator>Rutqvist, Jonny</creator><creator>Kim, Hyunwoo</creator><creator>Park, Dohyun</creator><creator>Ryu, Dong-Woo</creator><creator>Park, Eui-Seob</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160201</creationdate><title>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</title><author>Kim, Hyung-Mok ; Rutqvist, Jonny ; Kim, Hyunwoo ; Park, Dohyun ; Ryu, Dong-Woo ; Park, Eui-Seob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air leakage</topic><topic>Caverns</topic><topic>Caves</topic><topic>Civil Engineering</topic><topic>Compressed air</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy storage</topic><topic>Failure analysis</topic><topic>Geophysics/Geodesy</topic><topic>Leak detection</topic><topic>Leakage</topic><topic>Liners</topic><topic>Mathematical models</topic><topic>Mechanical failure</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Monitoring systems</topic><topic>Original Paper</topic><topic>Rock</topic><topic>Rocks</topic><topic>Underground</topic><topic>Underground storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyung-Mok</creatorcontrib><creatorcontrib>Rutqvist, Jonny</creatorcontrib><creatorcontrib>Kim, Hyunwoo</creatorcontrib><creatorcontrib>Park, Dohyun</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Park, Eui-Seob</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyung-Mok</au><au>Rutqvist, Jonny</au><au>Kim, Hyunwoo</au><au>Park, Dohyun</au><au>Ryu, Dong-Woo</au><au>Park, Eui-Seob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>49</volume><issue>2</issue><spage>573</spage><epage>584</epage><pages>573-584</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-015-0761-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2016-02, Vol.49 (2), p.573-584
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_miscellaneous_1793259129
source SpringerLink Journals
subjects Air leakage
Caverns
Caves
Civil Engineering
Compressed air
Earth and Environmental Science
Earth Sciences
Energy storage
Failure analysis
Geophysics/Geodesy
Leak detection
Leakage
Liners
Mathematical models
Mechanical failure
Monitoring
Monitoring methods
Monitoring systems
Original Paper
Rock
Rocks
Underground
Underground storage
title Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20Monitoring%20and%20Leakage%20Detection%20for%20Underground%20Storage%20of%20Compressed%20Air%20Energy%20in%20Lined%20Rock%20Caverns&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Kim,%20Hyung-Mok&rft.date=2016-02-01&rft.volume=49&rft.issue=2&rft.spage=573&rft.epage=584&rft.pages=573-584&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-015-0761-7&rft_dat=%3Cproquest_cross%3E3948347491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764288229&rft_id=info:pmid/&rfr_iscdi=true