Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns
Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2016-02, Vol.49 (2), p.573-584 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 2 |
container_start_page | 573 |
container_title | Rock mechanics and rock engineering |
container_volume | 49 |
creator | Kim, Hyung-Mok Rutqvist, Jonny Kim, Hyunwoo Park, Dohyun Ryu, Dong-Woo Park, Eui-Seob |
description | Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs. |
doi_str_mv | 10.1007/s00603-015-0761-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793259129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3948347491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</originalsourceid><addsrcrecordid>eNp10ctKAzEUBuAgCtbqA7gLuHEzmttMZpaltipUBLXgLqSTMyW9JDWZEfr2ZqwLEVwFku8_hPMjdEnJDSVE3kZCCsIzQvOMyIJm8ggNqOAiEzl_P0YDIhnPWMHZKTqLcUVIepTlAPmptpsuAH7yzrY-WLfE2hk8A73WS8B30ELdWu9w4wOeOwNhGXyXxGvSvfANHvvtLkCMYPDIBjxxCe2xdXhmXbp78fUaj_UnBBfP0UmjNxEufs4hmk8nb-OHbPZ8_zgezTItBGszxqVhi6IxXNCKG96wUlAgFQjGdGlMrTkxRV7JRU0X9aKuyibPm9JARXnBZMmH6Powdxf8RwexVVsba9hstAPfRUVlxVleUVYlevWHrnwXXPpdUoVgZcm-FT2oOvgYAzRqF-xWh72iRPUVqEMFKlWg-gqUTBl2yMRdv1gIvyb_G_oCb0aI1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764288229</pqid></control><display><type>article</type><title>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</title><source>SpringerLink Journals</source><creator>Kim, Hyung-Mok ; Rutqvist, Jonny ; Kim, Hyunwoo ; Park, Dohyun ; Ryu, Dong-Woo ; Park, Eui-Seob</creator><creatorcontrib>Kim, Hyung-Mok ; Rutqvist, Jonny ; Kim, Hyunwoo ; Park, Dohyun ; Ryu, Dong-Woo ; Park, Eui-Seob</creatorcontrib><description>Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-015-0761-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Air leakage ; Caverns ; Caves ; Civil Engineering ; Compressed air ; Earth and Environmental Science ; Earth Sciences ; Energy storage ; Failure analysis ; Geophysics/Geodesy ; Leak detection ; Leakage ; Liners ; Mathematical models ; Mechanical failure ; Monitoring ; Monitoring methods ; Monitoring systems ; Original Paper ; Rock ; Rocks ; Underground ; Underground storage</subject><ispartof>Rock mechanics and rock engineering, 2016-02, Vol.49 (2), p.573-584</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>Springer-Verlag Wien 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</citedby><cites>FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-015-0761-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-015-0761-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Hyung-Mok</creatorcontrib><creatorcontrib>Rutqvist, Jonny</creatorcontrib><creatorcontrib>Kim, Hyunwoo</creatorcontrib><creatorcontrib>Park, Dohyun</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Park, Eui-Seob</creatorcontrib><title>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.</description><subject>Air leakage</subject><subject>Caverns</subject><subject>Caves</subject><subject>Civil Engineering</subject><subject>Compressed air</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy storage</subject><subject>Failure analysis</subject><subject>Geophysics/Geodesy</subject><subject>Leak detection</subject><subject>Leakage</subject><subject>Liners</subject><subject>Mathematical models</subject><subject>Mechanical failure</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Monitoring systems</subject><subject>Original Paper</subject><subject>Rock</subject><subject>Rocks</subject><subject>Underground</subject><subject>Underground storage</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp10ctKAzEUBuAgCtbqA7gLuHEzmttMZpaltipUBLXgLqSTMyW9JDWZEfr2ZqwLEVwFku8_hPMjdEnJDSVE3kZCCsIzQvOMyIJm8ggNqOAiEzl_P0YDIhnPWMHZKTqLcUVIepTlAPmptpsuAH7yzrY-WLfE2hk8A73WS8B30ELdWu9w4wOeOwNhGXyXxGvSvfANHvvtLkCMYPDIBjxxCe2xdXhmXbp78fUaj_UnBBfP0UmjNxEufs4hmk8nb-OHbPZ8_zgezTItBGszxqVhi6IxXNCKG96wUlAgFQjGdGlMrTkxRV7JRU0X9aKuyibPm9JARXnBZMmH6Powdxf8RwexVVsba9hstAPfRUVlxVleUVYlevWHrnwXXPpdUoVgZcm-FT2oOvgYAzRqF-xWh72iRPUVqEMFKlWg-gqUTBl2yMRdv1gIvyb_G_oCb0aI1g</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Kim, Hyung-Mok</creator><creator>Rutqvist, Jonny</creator><creator>Kim, Hyunwoo</creator><creator>Park, Dohyun</creator><creator>Ryu, Dong-Woo</creator><creator>Park, Eui-Seob</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160201</creationdate><title>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</title><author>Kim, Hyung-Mok ; Rutqvist, Jonny ; Kim, Hyunwoo ; Park, Dohyun ; Ryu, Dong-Woo ; Park, Eui-Seob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-237d2b6fd34193d3f2841e09e422a8ddca30d6597bc1bcbc98f55f8de91362783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air leakage</topic><topic>Caverns</topic><topic>Caves</topic><topic>Civil Engineering</topic><topic>Compressed air</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy storage</topic><topic>Failure analysis</topic><topic>Geophysics/Geodesy</topic><topic>Leak detection</topic><topic>Leakage</topic><topic>Liners</topic><topic>Mathematical models</topic><topic>Mechanical failure</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Monitoring systems</topic><topic>Original Paper</topic><topic>Rock</topic><topic>Rocks</topic><topic>Underground</topic><topic>Underground storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyung-Mok</creatorcontrib><creatorcontrib>Rutqvist, Jonny</creatorcontrib><creatorcontrib>Kim, Hyunwoo</creatorcontrib><creatorcontrib>Park, Dohyun</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Park, Eui-Seob</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyung-Mok</au><au>Rutqvist, Jonny</au><au>Kim, Hyunwoo</au><au>Park, Dohyun</au><au>Ryu, Dong-Woo</au><au>Park, Eui-Seob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>49</volume><issue>2</issue><spage>573</spage><epage>584</epage><pages>573-584</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-015-0761-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2016-02, Vol.49 (2), p.573-584 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_miscellaneous_1793259129 |
source | SpringerLink Journals |
subjects | Air leakage Caverns Caves Civil Engineering Compressed air Earth and Environmental Science Earth Sciences Energy storage Failure analysis Geophysics/Geodesy Leak detection Leakage Liners Mathematical models Mechanical failure Monitoring Monitoring methods Monitoring systems Original Paper Rock Rocks Underground Underground storage |
title | Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20Monitoring%20and%20Leakage%20Detection%20for%20Underground%20Storage%20of%20Compressed%20Air%20Energy%20in%20Lined%20Rock%20Caverns&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Kim,%20Hyung-Mok&rft.date=2016-02-01&rft.volume=49&rft.issue=2&rft.spage=573&rft.epage=584&rft.pages=573-584&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-015-0761-7&rft_dat=%3Cproquest_cross%3E3948347491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764288229&rft_id=info:pmid/&rfr_iscdi=true |