Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems

In this study, a novel adaptive neural network (NN)-based leader-following consensus approach is proposed for a class of non-linear second-order multi-agent systems. For the existing NN consensus approaches, to obtain the desired approximation accuracy, the NN-based adaptive consensus algorithms req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications 2015-08, Vol.9 (13), p.1927-1934
Hauptverfasser: Wen, Guo-Xing, Chen, C.L. Philip, Liu, Yan-Jun, Liu, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1934
container_issue 13
container_start_page 1927
container_title IET control theory & applications
container_volume 9
creator Wen, Guo-Xing
Chen, C.L. Philip
Liu, Yan-Jun
Liu, Zhi
description In this study, a novel adaptive neural network (NN)-based leader-following consensus approach is proposed for a class of non-linear second-order multi-agent systems. For the existing NN consensus approaches, to obtain the desired approximation accuracy, the NN-based adaptive consensus algorithms require the number of NN nodes to must be large enough, and thus the online computation burden often are very heavy. However, the proposed adaptive consensus scheme can greatly reduce the online computation burden, because the adaptive adjusting parameters are designed in scalar form, which is the norm of the estimation of the optimal NN weight matrix. According to Lyapunov stability theory, the proposed approach can guarantee the leader-following consensus behaviour of non-linear second-order multi-agent systems to be obtained. Finally, a numerical simulation and a multi-manipulator simulation are carried out to further demonstrate the effectiveness of the proposed consensus approach.
doi_str_mv 10.1049/iet-cta.2014.1319
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793258318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793256385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5761-e43cc774c081b8591c26805d4af1b5368198893ef444ffaf9d623058a5f04ecb3</originalsourceid><addsrcrecordid>eNqNks1u3CAUha2okZImeYDsvGwXTMH8GLpLR_mTomYzWSMGXyKnDLiAO5q3j62Jqi6idFZcpO-ci8RXVZcELwhm6lsPBdliFg0mbEEoUUfVKWk5QVLw5tPfmbGT6nPOLxhzLhg_rYafMCbjUYCyjekXWpsMXW06M5T-D9QeTAcJueh93PbhubYxZAh5zPNUUvS1i6nOMN06FNME1yEG5PsAJtWb0ZcemWcIpc67XGCTz6tjZ3yGi7fzrHq6uV4t79DD4-398uoBWd4KgoBRa9uWWSzJWnJFbCMk5h0zjqw5FZIoKRUFxxhzzjjViYZiLg13mIFd07Pqy753SPH3CLnoTZ8teG8CxDFr0iraiEYocRjKJSXyQFRQyQ9EmVKHtjZYzm8le9SmmHMCp4fUb0zaaYL1bIKeTNCTCXo2Qc8mTJnv-8y297D7f0AvV3fNjxuMZUumMNqHZ-wljilMv_bhsq_v8PfXq6n16p8dQ-foK7RL1oM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793252086</pqid></control><display><type>article</type><title>Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems</title><source>Wiley-Blackwell Open Access Titles</source><creator>Wen, Guo-Xing ; Chen, C.L. Philip ; Liu, Yan-Jun ; Liu, Zhi</creator><creatorcontrib>Wen, Guo-Xing ; Chen, C.L. Philip ; Liu, Yan-Jun ; Liu, Zhi</creatorcontrib><description>In this study, a novel adaptive neural network (NN)-based leader-following consensus approach is proposed for a class of non-linear second-order multi-agent systems. For the existing NN consensus approaches, to obtain the desired approximation accuracy, the NN-based adaptive consensus algorithms require the number of NN nodes to must be large enough, and thus the online computation burden often are very heavy. However, the proposed adaptive consensus scheme can greatly reduce the online computation burden, because the adaptive adjusting parameters are designed in scalar form, which is the norm of the estimation of the optimal NN weight matrix. According to Lyapunov stability theory, the proposed approach can guarantee the leader-following consensus behaviour of non-linear second-order multi-agent systems to be obtained. Finally, a numerical simulation and a multi-manipulator simulation are carried out to further demonstrate the effectiveness of the proposed consensus approach.</description><identifier>ISSN: 1751-8644</identifier><identifier>ISSN: 1751-8652</identifier><identifier>EISSN: 1751-8652</identifier><identifier>DOI: 10.1049/iet-cta.2014.1319</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>adaptive control ; adaptive leader following consensus control ; Algorithms ; Computation ; Computer simulation ; leader following consensus approach ; Lyapunov methods ; Lyapunov stability theory ; Mathematical models ; matrix algebra ; Multiagent systems ; multimanipulator simulation ; multi‐agent systems ; neural network ; Neural networks ; neurocontrollers ; NN based adaptive consensus algorithms ; NN nodes ; nonlinear control systems ; Nonlinearity ; numerical analysis ; numerical simulation ; Online ; online computation ; optimal NN weight matrix ; second order nonlinear multiagent systems</subject><ispartof>IET control theory &amp; applications, 2015-08, Vol.9 (13), p.1927-1934</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Control Theory &amp; Applications published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5761-e43cc774c081b8591c26805d4af1b5368198893ef444ffaf9d623058a5f04ecb3</citedby><cites>FETCH-LOGICAL-c5761-e43cc774c081b8591c26805d4af1b5368198893ef444ffaf9d623058a5f04ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cta.2014.1319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cta.2014.1319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2014.1319$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Wen, Guo-Xing</creatorcontrib><creatorcontrib>Chen, C.L. Philip</creatorcontrib><creatorcontrib>Liu, Yan-Jun</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><title>Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems</title><title>IET control theory &amp; applications</title><description>In this study, a novel adaptive neural network (NN)-based leader-following consensus approach is proposed for a class of non-linear second-order multi-agent systems. For the existing NN consensus approaches, to obtain the desired approximation accuracy, the NN-based adaptive consensus algorithms require the number of NN nodes to must be large enough, and thus the online computation burden often are very heavy. However, the proposed adaptive consensus scheme can greatly reduce the online computation burden, because the adaptive adjusting parameters are designed in scalar form, which is the norm of the estimation of the optimal NN weight matrix. According to Lyapunov stability theory, the proposed approach can guarantee the leader-following consensus behaviour of non-linear second-order multi-agent systems to be obtained. Finally, a numerical simulation and a multi-manipulator simulation are carried out to further demonstrate the effectiveness of the proposed consensus approach.</description><subject>adaptive control</subject><subject>adaptive leader following consensus control</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>leader following consensus approach</subject><subject>Lyapunov methods</subject><subject>Lyapunov stability theory</subject><subject>Mathematical models</subject><subject>matrix algebra</subject><subject>Multiagent systems</subject><subject>multimanipulator simulation</subject><subject>multi‐agent systems</subject><subject>neural network</subject><subject>Neural networks</subject><subject>neurocontrollers</subject><subject>NN based adaptive consensus algorithms</subject><subject>NN nodes</subject><subject>nonlinear control systems</subject><subject>Nonlinearity</subject><subject>numerical analysis</subject><subject>numerical simulation</subject><subject>Online</subject><subject>online computation</subject><subject>optimal NN weight matrix</subject><subject>second order nonlinear multiagent systems</subject><issn>1751-8644</issn><issn>1751-8652</issn><issn>1751-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks1u3CAUha2okZImeYDsvGwXTMH8GLpLR_mTomYzWSMGXyKnDLiAO5q3j62Jqi6idFZcpO-ci8RXVZcELwhm6lsPBdliFg0mbEEoUUfVKWk5QVLw5tPfmbGT6nPOLxhzLhg_rYafMCbjUYCyjekXWpsMXW06M5T-D9QeTAcJueh93PbhubYxZAh5zPNUUvS1i6nOMN06FNME1yEG5PsAJtWb0ZcemWcIpc67XGCTz6tjZ3yGi7fzrHq6uV4t79DD4-398uoBWd4KgoBRa9uWWSzJWnJFbCMk5h0zjqw5FZIoKRUFxxhzzjjViYZiLg13mIFd07Pqy753SPH3CLnoTZ8teG8CxDFr0iraiEYocRjKJSXyQFRQyQ9EmVKHtjZYzm8le9SmmHMCp4fUb0zaaYL1bIKeTNCTCXo2Qc8mTJnv-8y297D7f0AvV3fNjxuMZUumMNqHZ-wljilMv_bhsq_v8PfXq6n16p8dQ-foK7RL1oM</recordid><startdate>20150827</startdate><enddate>20150827</enddate><creator>Wen, Guo-Xing</creator><creator>Chen, C.L. Philip</creator><creator>Liu, Yan-Jun</creator><creator>Liu, Zhi</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150827</creationdate><title>Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems</title><author>Wen, Guo-Xing ; Chen, C.L. Philip ; Liu, Yan-Jun ; Liu, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5761-e43cc774c081b8591c26805d4af1b5368198893ef444ffaf9d623058a5f04ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive control</topic><topic>adaptive leader following consensus control</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>leader following consensus approach</topic><topic>Lyapunov methods</topic><topic>Lyapunov stability theory</topic><topic>Mathematical models</topic><topic>matrix algebra</topic><topic>Multiagent systems</topic><topic>multimanipulator simulation</topic><topic>multi‐agent systems</topic><topic>neural network</topic><topic>Neural networks</topic><topic>neurocontrollers</topic><topic>NN based adaptive consensus algorithms</topic><topic>NN nodes</topic><topic>nonlinear control systems</topic><topic>Nonlinearity</topic><topic>numerical analysis</topic><topic>numerical simulation</topic><topic>Online</topic><topic>online computation</topic><topic>optimal NN weight matrix</topic><topic>second order nonlinear multiagent systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Guo-Xing</creatorcontrib><creatorcontrib>Chen, C.L. Philip</creatorcontrib><creatorcontrib>Liu, Yan-Jun</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET control theory &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, Guo-Xing</au><au>Chen, C.L. Philip</au><au>Liu, Yan-Jun</au><au>Liu, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems</atitle><jtitle>IET control theory &amp; applications</jtitle><date>2015-08-27</date><risdate>2015</risdate><volume>9</volume><issue>13</issue><spage>1927</spage><epage>1934</epage><pages>1927-1934</pages><issn>1751-8644</issn><issn>1751-8652</issn><eissn>1751-8652</eissn><abstract>In this study, a novel adaptive neural network (NN)-based leader-following consensus approach is proposed for a class of non-linear second-order multi-agent systems. For the existing NN consensus approaches, to obtain the desired approximation accuracy, the NN-based adaptive consensus algorithms require the number of NN nodes to must be large enough, and thus the online computation burden often are very heavy. However, the proposed adaptive consensus scheme can greatly reduce the online computation burden, because the adaptive adjusting parameters are designed in scalar form, which is the norm of the estimation of the optimal NN weight matrix. According to Lyapunov stability theory, the proposed approach can guarantee the leader-following consensus behaviour of non-linear second-order multi-agent systems to be obtained. Finally, a numerical simulation and a multi-manipulator simulation are carried out to further demonstrate the effectiveness of the proposed consensus approach.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cta.2014.1319</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8644
ispartof IET control theory & applications, 2015-08, Vol.9 (13), p.1927-1934
issn 1751-8644
1751-8652
1751-8652
language eng
recordid cdi_proquest_miscellaneous_1793258318
source Wiley-Blackwell Open Access Titles
subjects adaptive control
adaptive leader following consensus control
Algorithms
Computation
Computer simulation
leader following consensus approach
Lyapunov methods
Lyapunov stability theory
Mathematical models
matrix algebra
Multiagent systems
multimanipulator simulation
multi‐agent systems
neural network
Neural networks
neurocontrollers
NN based adaptive consensus algorithms
NN nodes
nonlinear control systems
Nonlinearity
numerical analysis
numerical simulation
Online
online computation
optimal NN weight matrix
second order nonlinear multiagent systems
title Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network-based%20adaptive%20leader-following%20consensus%20control%20for%20second-order%20non-linear%20multi-agent%20systems&rft.jtitle=IET%20control%20theory%20&%20applications&rft.au=Wen,%20Guo-Xing&rft.date=2015-08-27&rft.volume=9&rft.issue=13&rft.spage=1927&rft.epage=1934&rft.pages=1927-1934&rft.issn=1751-8644&rft.eissn=1751-8652&rft_id=info:doi/10.1049/iet-cta.2014.1319&rft_dat=%3Cproquest_24P%3E1793256385%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793252086&rft_id=info:pmid/&rfr_iscdi=true