Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2015-06, Vol.55 (6), p.63011-13
Hauptverfasser: Moreau, D., Artaud, J.F., Ferron, J.R., Holcomb, C.T., Humphreys, D.A., Liu, F., Luce, T.C., Park, J.M., Prater, R., Turco, F., Walker, M.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 63011
container_title Nuclear fusion
container_volume 55
creator Moreau, D.
Artaud, J.F.
Ferron, J.R.
Holcomb, C.T.
Humphreys, D.A.
Liu, F.
Luce, T.C.
Park, J.M.
Prater, R.
Turco, F.
Walker, M.L.
description This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.
doi_str_mv 10.1088/0029-5515/55/6/063011
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793256437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793256437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-b23c0d73d911b874b6b7f1f5f4ff873dd2d829443498aa7049b32bb9e1669a183</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVoIdu0HyEgcurFXY0l2daxLG0aCOTSnsXoj1NlbWkraQv59tXi0msv84bh9wbeDCG3wD4Bm6Y9Y73qpAS5l3I_7NnAGcAV2cEooBO8H96Q3T_mmrwr5YUxEMD5juRDWk2I3tEVn6OvwVKMjh7D1tsUa04LTTNF9xujbWBNR1zxSEv16F6bYPW0WB8xh1SowdKgFGnxa-j8ego5WFzompxflhCf35O3My7Ff_irN-TH1y_fD9-6x6f7h8Pnx84K1tfO9NwyN3KnAMw0CjOYcYZZzmKepzZ2vZt6JQQXakIcmVCG98YoD8OgECZ-Q-62vanUoIsN1dufLVD0tmrgo1RybNDHDTrl9OvsS9VraFmWBaNP56JhVLyXg-AXVG6ozamU7Gd9ymHF_KqB6csj9OXI-nLkVvSgt0c0H2y-kE76JZ1zbKn_4_kDZTmKpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793256437</pqid></control><display><type>article</type><title>Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Moreau, D. ; Artaud, J.F. ; Ferron, J.R. ; Holcomb, C.T. ; Humphreys, D.A. ; Liu, F. ; Luce, T.C. ; Park, J.M. ; Prater, R. ; Turco, F. ; Walker, M.L.</creator><creatorcontrib>Moreau, D. ; Artaud, J.F. ; Ferron, J.R. ; Holcomb, C.T. ; Humphreys, D.A. ; Liu, F. ; Luce, T.C. ; Park, J.M. ; Prater, R. ; Turco, F. ; Walker, M.L. ; General Atomics, San Diego, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&amp;CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/55/6/063011</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Computer simulation ; Control theory ; Disturbances ; Feedforward ; heating and current drive ; Mathematical models ; Nuclear power generation ; plasma control ; plasma simulation ; profile control ; Steady state ; steady state operation scenarios ; TIME PROFILE CONTROL ; Tokamak devices ; tokamaks</subject><ispartof>Nuclear fusion, 2015-06, Vol.55 (6), p.63011-13</ispartof><rights>2015 EURATOM</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-b23c0d73d911b874b6b7f1f5f4ff873dd2d829443498aa7049b32bb9e1669a183</citedby><cites>FETCH-LOGICAL-c402t-b23c0d73d911b874b6b7f1f5f4ff873dd2d829443498aa7049b32bb9e1669a183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/55/6/063011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1375957$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreau, D.</creatorcontrib><creatorcontrib>Artaud, J.F.</creatorcontrib><creatorcontrib>Ferron, J.R.</creatorcontrib><creatorcontrib>Holcomb, C.T.</creatorcontrib><creatorcontrib>Humphreys, D.A.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Luce, T.C.</creatorcontrib><creatorcontrib>Park, J.M.</creatorcontrib><creatorcontrib>Prater, R.</creatorcontrib><creatorcontrib>Turco, F.</creatorcontrib><creatorcontrib>Walker, M.L.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&amp;CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Disturbances</subject><subject>Feedforward</subject><subject>heating and current drive</subject><subject>Mathematical models</subject><subject>Nuclear power generation</subject><subject>plasma control</subject><subject>plasma simulation</subject><subject>profile control</subject><subject>Steady state</subject><subject>steady state operation scenarios</subject><subject>TIME PROFILE CONTROL</subject><subject>Tokamak devices</subject><subject>tokamaks</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVoIdu0HyEgcurFXY0l2daxLG0aCOTSnsXoj1NlbWkraQv59tXi0msv84bh9wbeDCG3wD4Bm6Y9Y73qpAS5l3I_7NnAGcAV2cEooBO8H96Q3T_mmrwr5YUxEMD5juRDWk2I3tEVn6OvwVKMjh7D1tsUa04LTTNF9xujbWBNR1zxSEv16F6bYPW0WB8xh1SowdKgFGnxa-j8ego5WFzompxflhCf35O3My7Ff_irN-TH1y_fD9-6x6f7h8Pnx84K1tfO9NwyN3KnAMw0CjOYcYZZzmKepzZ2vZt6JQQXakIcmVCG98YoD8OgECZ-Q-62vanUoIsN1dufLVD0tmrgo1RybNDHDTrl9OvsS9VraFmWBaNP56JhVLyXg-AXVG6ozamU7Gd9ymHF_KqB6csj9OXI-nLkVvSgt0c0H2y-kE76JZ1zbKn_4_kDZTmKpA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Moreau, D.</creator><creator>Artaud, J.F.</creator><creator>Ferron, J.R.</creator><creator>Holcomb, C.T.</creator><creator>Humphreys, D.A.</creator><creator>Liu, F.</creator><creator>Luce, T.C.</creator><creator>Park, J.M.</creator><creator>Prater, R.</creator><creator>Turco, F.</creator><creator>Walker, M.L.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150601</creationdate><title>Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling</title><author>Moreau, D. ; Artaud, J.F. ; Ferron, J.R. ; Holcomb, C.T. ; Humphreys, D.A. ; Liu, F. ; Luce, T.C. ; Park, J.M. ; Prater, R. ; Turco, F. ; Walker, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-b23c0d73d911b874b6b7f1f5f4ff873dd2d829443498aa7049b32bb9e1669a183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Disturbances</topic><topic>Feedforward</topic><topic>heating and current drive</topic><topic>Mathematical models</topic><topic>Nuclear power generation</topic><topic>plasma control</topic><topic>plasma simulation</topic><topic>profile control</topic><topic>Steady state</topic><topic>steady state operation scenarios</topic><topic>TIME PROFILE CONTROL</topic><topic>Tokamak devices</topic><topic>tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreau, D.</creatorcontrib><creatorcontrib>Artaud, J.F.</creatorcontrib><creatorcontrib>Ferron, J.R.</creatorcontrib><creatorcontrib>Holcomb, C.T.</creatorcontrib><creatorcontrib>Humphreys, D.A.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Luce, T.C.</creatorcontrib><creatorcontrib>Park, J.M.</creatorcontrib><creatorcontrib>Prater, R.</creatorcontrib><creatorcontrib>Turco, F.</creatorcontrib><creatorcontrib>Walker, M.L.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreau, D.</au><au>Artaud, J.F.</au><au>Ferron, J.R.</au><au>Holcomb, C.T.</au><au>Humphreys, D.A.</au><au>Liu, F.</au><au>Luce, T.C.</au><au>Park, J.M.</au><au>Prater, R.</au><au>Turco, F.</au><au>Walker, M.L.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>55</volume><issue>6</issue><spage>63011</spage><epage>13</epage><pages>63011-13</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&amp;CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/0029-5515/55/6/063011</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2015-06, Vol.55 (6), p.63011-13
issn 0029-5515
1741-4326
language eng
recordid cdi_proquest_miscellaneous_1793256437
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Computer simulation
Control theory
Disturbances
Feedforward
heating and current drive
Mathematical models
Nuclear power generation
plasma control
plasma simulation
profile control
Steady state
steady state operation scenarios
TIME PROFILE CONTROL
Tokamak devices
tokamaks
title Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20magnetic%20and%20kinetic%20control%20of%20advanced%20tokamak%20steady%20state%20scenarios%20based%20on%20semi-empirical%20modelling&rft.jtitle=Nuclear%20fusion&rft.au=Moreau,%20D.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2015-06-01&rft.volume=55&rft.issue=6&rft.spage=63011&rft.epage=13&rft.pages=63011-13&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/55/6/063011&rft_dat=%3Cproquest_iop_j%3E1793256437%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793256437&rft_id=info:pmid/&rfr_iscdi=true