Density fluctuations as an intrinsic mechanism of pressure profile formation
This article provides new insight into previous and new experimental data regarding behaviour of small-scale density fluctuations in T-10 ohmic and electron cyclotron resonance heated (ECRH) discharges. The experiments demonstrate the existence of certain peaked-'marginal' normalized plasm...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2015-06, Vol.55 (6), p.63014-15 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 6 |
container_start_page | 63014 |
container_title | Nuclear fusion |
container_volume | 55 |
creator | Vershkov, V.A. Shelukhin, D.A. Subbotin, G.F. Dnestrovskij, Yu.N. Danilov, A.V. Melnikov, A.V. Eliseev, L.G. Maltsev, S.G. Gorbunov, E.P. Sergeev, D.S. Krylov, S.V. Myalton, T.B. Ryzhakov, D.V. Trukhin, V.M. Chistiakov, V.V. Cherkasov, S.V. |
description | This article provides new insight into previous and new experimental data regarding behaviour of small-scale density fluctuations in T-10 ohmic and electron cyclotron resonance heated (ECRH) discharges. The experiments demonstrate the existence of certain peaked-'marginal' normalized plasma pressure profiles in both ohmic and discharges with on-axis ECRH. Strong particle confinement degradation occurred when the normalized plasma pressure gradient exceeded this marginal profile gradient (fast density decay in ohmic, 'density pump out' in ECRH). The marginal profile could be achieved either with a flat density and peaked temperature profile or vice versa. Minimal turbulence level did not depend on heating power and was observed with the 'optimal' pressure profile, which was slightly broader than the marginal profile. The density fluctuations did not significantly contribute to the heat transport but determined particle fluxes to maintain the pressure profile. The experimental density behaviour could be reasonably described with the modified model of canonical profiles, which includes particle confinement deterioration under marginal pressure profile conditions. |
doi_str_mv | 10.1088/0029-5515/55/6/063014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793255928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793255928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c4f044c658a51ca73ea2eedbc829094d62e83ce0cfce518a64a690bd58c610973</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_Qdijl3XzvclRqlah4EXPIU0nmLK7qcnuof_e1BWvwjAzMM87zLwI3RJ8T7BSDcZU10IQ0QjRyAZLhgk_QwvSclJzRuU5Wvwxl-gq5z0uBGFsgTaPMOQwHivfTW6c7BjikCtbYqjCMKZQpq7qwX3aIeS-ir46JMh5SlCa6EMHlY-p_xFeowtvuww3v3WJPp6f3lcv9eZt_bp62NSOaT7WjnvMuZNCWUGcbRlYCrDbOkU11nwnKSjmADvvQBBlJbdS4-1OKCcJ1i1bort5b7nga4I8mj5kB11nB4hTNqTVjAqhqSqomFGXYs4JvDmk0Nt0NASbk3vm5Iw5OVOSkWZ2r-jIrAvxYPZxSkN56B_NN44Nchc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793255928</pqid></control><display><type>article</type><title>Density fluctuations as an intrinsic mechanism of pressure profile formation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vershkov, V.A. ; Shelukhin, D.A. ; Subbotin, G.F. ; Dnestrovskij, Yu.N. ; Danilov, A.V. ; Melnikov, A.V. ; Eliseev, L.G. ; Maltsev, S.G. ; Gorbunov, E.P. ; Sergeev, D.S. ; Krylov, S.V. ; Myalton, T.B. ; Ryzhakov, D.V. ; Trukhin, V.M. ; Chistiakov, V.V. ; Cherkasov, S.V.</creator><creatorcontrib>Vershkov, V.A. ; Shelukhin, D.A. ; Subbotin, G.F. ; Dnestrovskij, Yu.N. ; Danilov, A.V. ; Melnikov, A.V. ; Eliseev, L.G. ; Maltsev, S.G. ; Gorbunov, E.P. ; Sergeev, D.S. ; Krylov, S.V. ; Myalton, T.B. ; Ryzhakov, D.V. ; Trukhin, V.M. ; Chistiakov, V.V. ; Cherkasov, S.V.</creatorcontrib><description>This article provides new insight into previous and new experimental data regarding behaviour of small-scale density fluctuations in T-10 ohmic and electron cyclotron resonance heated (ECRH) discharges. The experiments demonstrate the existence of certain peaked-'marginal' normalized plasma pressure profiles in both ohmic and discharges with on-axis ECRH. Strong particle confinement degradation occurred when the normalized plasma pressure gradient exceeded this marginal profile gradient (fast density decay in ohmic, 'density pump out' in ECRH). The marginal profile could be achieved either with a flat density and peaked temperature profile or vice versa. Minimal turbulence level did not depend on heating power and was observed with the 'optimal' pressure profile, which was slightly broader than the marginal profile. The density fluctuations did not significantly contribute to the heat transport but determined particle fluxes to maintain the pressure profile. The experimental density behaviour could be reasonably described with the modified model of canonical profiles, which includes particle confinement deterioration under marginal pressure profile conditions.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/55/6/063014</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>additional heating ; canonical profile transport model ; Confinement ; Density ; Fluctuation ; Heating ; Mathematical models ; Ohmic ; Plasma pressure ; plasma pressure profile ; reflectometry ; small-scale density fluctuations ; Turbulent flow</subject><ispartof>Nuclear fusion, 2015-06, Vol.55 (6), p.63014-15</ispartof><rights>2015 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c4f044c658a51ca73ea2eedbc829094d62e83ce0cfce518a64a690bd58c610973</citedby><cites>FETCH-LOGICAL-c394t-c4f044c658a51ca73ea2eedbc829094d62e83ce0cfce518a64a690bd58c610973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/55/6/063014/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Vershkov, V.A.</creatorcontrib><creatorcontrib>Shelukhin, D.A.</creatorcontrib><creatorcontrib>Subbotin, G.F.</creatorcontrib><creatorcontrib>Dnestrovskij, Yu.N.</creatorcontrib><creatorcontrib>Danilov, A.V.</creatorcontrib><creatorcontrib>Melnikov, A.V.</creatorcontrib><creatorcontrib>Eliseev, L.G.</creatorcontrib><creatorcontrib>Maltsev, S.G.</creatorcontrib><creatorcontrib>Gorbunov, E.P.</creatorcontrib><creatorcontrib>Sergeev, D.S.</creatorcontrib><creatorcontrib>Krylov, S.V.</creatorcontrib><creatorcontrib>Myalton, T.B.</creatorcontrib><creatorcontrib>Ryzhakov, D.V.</creatorcontrib><creatorcontrib>Trukhin, V.M.</creatorcontrib><creatorcontrib>Chistiakov, V.V.</creatorcontrib><creatorcontrib>Cherkasov, S.V.</creatorcontrib><title>Density fluctuations as an intrinsic mechanism of pressure profile formation</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>This article provides new insight into previous and new experimental data regarding behaviour of small-scale density fluctuations in T-10 ohmic and electron cyclotron resonance heated (ECRH) discharges. The experiments demonstrate the existence of certain peaked-'marginal' normalized plasma pressure profiles in both ohmic and discharges with on-axis ECRH. Strong particle confinement degradation occurred when the normalized plasma pressure gradient exceeded this marginal profile gradient (fast density decay in ohmic, 'density pump out' in ECRH). The marginal profile could be achieved either with a flat density and peaked temperature profile or vice versa. Minimal turbulence level did not depend on heating power and was observed with the 'optimal' pressure profile, which was slightly broader than the marginal profile. The density fluctuations did not significantly contribute to the heat transport but determined particle fluxes to maintain the pressure profile. The experimental density behaviour could be reasonably described with the modified model of canonical profiles, which includes particle confinement deterioration under marginal pressure profile conditions.</description><subject>additional heating</subject><subject>canonical profile transport model</subject><subject>Confinement</subject><subject>Density</subject><subject>Fluctuation</subject><subject>Heating</subject><subject>Mathematical models</subject><subject>Ohmic</subject><subject>Plasma pressure</subject><subject>plasma pressure profile</subject><subject>reflectometry</subject><subject>small-scale density fluctuations</subject><subject>Turbulent flow</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_Qdijl3XzvclRqlah4EXPIU0nmLK7qcnuof_e1BWvwjAzMM87zLwI3RJ8T7BSDcZU10IQ0QjRyAZLhgk_QwvSclJzRuU5Wvwxl-gq5z0uBGFsgTaPMOQwHivfTW6c7BjikCtbYqjCMKZQpq7qwX3aIeS-ir46JMh5SlCa6EMHlY-p_xFeowtvuww3v3WJPp6f3lcv9eZt_bp62NSOaT7WjnvMuZNCWUGcbRlYCrDbOkU11nwnKSjmADvvQBBlJbdS4-1OKCcJ1i1bort5b7nga4I8mj5kB11nB4hTNqTVjAqhqSqomFGXYs4JvDmk0Nt0NASbk3vm5Iw5OVOSkWZ2r-jIrAvxYPZxSkN56B_NN44Nchc</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Vershkov, V.A.</creator><creator>Shelukhin, D.A.</creator><creator>Subbotin, G.F.</creator><creator>Dnestrovskij, Yu.N.</creator><creator>Danilov, A.V.</creator><creator>Melnikov, A.V.</creator><creator>Eliseev, L.G.</creator><creator>Maltsev, S.G.</creator><creator>Gorbunov, E.P.</creator><creator>Sergeev, D.S.</creator><creator>Krylov, S.V.</creator><creator>Myalton, T.B.</creator><creator>Ryzhakov, D.V.</creator><creator>Trukhin, V.M.</creator><creator>Chistiakov, V.V.</creator><creator>Cherkasov, S.V.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>Density fluctuations as an intrinsic mechanism of pressure profile formation</title><author>Vershkov, V.A. ; Shelukhin, D.A. ; Subbotin, G.F. ; Dnestrovskij, Yu.N. ; Danilov, A.V. ; Melnikov, A.V. ; Eliseev, L.G. ; Maltsev, S.G. ; Gorbunov, E.P. ; Sergeev, D.S. ; Krylov, S.V. ; Myalton, T.B. ; Ryzhakov, D.V. ; Trukhin, V.M. ; Chistiakov, V.V. ; Cherkasov, S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c4f044c658a51ca73ea2eedbc829094d62e83ce0cfce518a64a690bd58c610973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>additional heating</topic><topic>canonical profile transport model</topic><topic>Confinement</topic><topic>Density</topic><topic>Fluctuation</topic><topic>Heating</topic><topic>Mathematical models</topic><topic>Ohmic</topic><topic>Plasma pressure</topic><topic>plasma pressure profile</topic><topic>reflectometry</topic><topic>small-scale density fluctuations</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vershkov, V.A.</creatorcontrib><creatorcontrib>Shelukhin, D.A.</creatorcontrib><creatorcontrib>Subbotin, G.F.</creatorcontrib><creatorcontrib>Dnestrovskij, Yu.N.</creatorcontrib><creatorcontrib>Danilov, A.V.</creatorcontrib><creatorcontrib>Melnikov, A.V.</creatorcontrib><creatorcontrib>Eliseev, L.G.</creatorcontrib><creatorcontrib>Maltsev, S.G.</creatorcontrib><creatorcontrib>Gorbunov, E.P.</creatorcontrib><creatorcontrib>Sergeev, D.S.</creatorcontrib><creatorcontrib>Krylov, S.V.</creatorcontrib><creatorcontrib>Myalton, T.B.</creatorcontrib><creatorcontrib>Ryzhakov, D.V.</creatorcontrib><creatorcontrib>Trukhin, V.M.</creatorcontrib><creatorcontrib>Chistiakov, V.V.</creatorcontrib><creatorcontrib>Cherkasov, S.V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vershkov, V.A.</au><au>Shelukhin, D.A.</au><au>Subbotin, G.F.</au><au>Dnestrovskij, Yu.N.</au><au>Danilov, A.V.</au><au>Melnikov, A.V.</au><au>Eliseev, L.G.</au><au>Maltsev, S.G.</au><au>Gorbunov, E.P.</au><au>Sergeev, D.S.</au><au>Krylov, S.V.</au><au>Myalton, T.B.</au><au>Ryzhakov, D.V.</au><au>Trukhin, V.M.</au><au>Chistiakov, V.V.</au><au>Cherkasov, S.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density fluctuations as an intrinsic mechanism of pressure profile formation</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>55</volume><issue>6</issue><spage>63014</spage><epage>15</epage><pages>63014-15</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>This article provides new insight into previous and new experimental data regarding behaviour of small-scale density fluctuations in T-10 ohmic and electron cyclotron resonance heated (ECRH) discharges. The experiments demonstrate the existence of certain peaked-'marginal' normalized plasma pressure profiles in both ohmic and discharges with on-axis ECRH. Strong particle confinement degradation occurred when the normalized plasma pressure gradient exceeded this marginal profile gradient (fast density decay in ohmic, 'density pump out' in ECRH). The marginal profile could be achieved either with a flat density and peaked temperature profile or vice versa. Minimal turbulence level did not depend on heating power and was observed with the 'optimal' pressure profile, which was slightly broader than the marginal profile. The density fluctuations did not significantly contribute to the heat transport but determined particle fluxes to maintain the pressure profile. The experimental density behaviour could be reasonably described with the modified model of canonical profiles, which includes particle confinement deterioration under marginal pressure profile conditions.</abstract><pub>IOP Publishing</pub><doi>10.1088/0029-5515/55/6/063014</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2015-06, Vol.55 (6), p.63014-15 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793255928 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | additional heating canonical profile transport model Confinement Density Fluctuation Heating Mathematical models Ohmic Plasma pressure plasma pressure profile reflectometry small-scale density fluctuations Turbulent flow |
title | Density fluctuations as an intrinsic mechanism of pressure profile formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20fluctuations%20as%20an%20intrinsic%20mechanism%20of%20pressure%20profile%20formation&rft.jtitle=Nuclear%20fusion&rft.au=Vershkov,%20V.A.&rft.date=2015-06-01&rft.volume=55&rft.issue=6&rft.spage=63014&rft.epage=15&rft.pages=63014-15&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/55/6/063014&rft_dat=%3Cproquest_iop_j%3E1793255928%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793255928&rft_id=info:pmid/&rfr_iscdi=true |