On the limit of conditional Spearman’s rho under the common factor model
Under the common factor structural model of credit risk, we study a limit of a conditional Spearman’s rho coefficient. The conditioning event is that the common factor stays below a threshold and the limit is taken as the threshold tends to − ∞ . The main result is established through a relation wit...
Gespeichert in:
Veröffentlicht in: | Extremes (Boston) 2016-03, Vol.19 (1), p.51-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Extremes (Boston) |
container_volume | 19 |
creator | Bae, Taehan Iscoe, Ian |
description | Under the common factor structural model of credit risk, we study a limit of a conditional Spearman’s rho coefficient. The conditioning event is that the common factor stays below a threshold and the limit is taken as the threshold tends to −
∞
. The main result is established through a relation with the classical theory of regular variation. We identify the relationship between the limiting Spearman’s rho and the tail thickness of the distribution function of the common factor. In particular, a necessary condition for the limiting Spearman’s rho to be strictly less than 1, is that the inverse cumulative distribution function of the common random variable is slowly varying at zero. As an illustration, the calculation of Stress Value-at-Risk for portfolio credit losses is discussed. |
doi_str_mv | 10.1007/s10687-015-0231-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793253350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3937127571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-f811c8110b7b0cb70aa39e97960bb71a6f4609f093ef12053459571d46fe7ae13</originalsourceid><addsrcrecordid>eNp1kL1KBDEURoMouK4-gF3AxiaaO9kkm1IWf1mwUMEuZDKJO8vMZE1mCjtfw9fzScw6FiJYXO4tzvfBPQgdAz0DSuV5AirmklDghBYMCNtBE-CyIAr4826-2VwQUErto4OU1jRnQPAJurvvcL9yuKnbusfBYxu6qu7r0JkGP2ycia3pPt8_Eo6rgIeucvGbt6FtQ4e9sX2IuA2Vaw7RnjdNckc_e4qeri4fFzdkeX99u7hYEssk9MTPAWweWsqS2lJSY5hySipBy1KCEX4mqPJUMeehoJzNuOISqpnwThoHbIpOx95NDK-DS71u62Rd05jOhSFpkIoVnDFOM3ryB12HIebXtpTI7VIKkSkYKRtDStF5vYl1a-KbBqq3dvVoV2e7emtXs5wpxkzKbPfi4q_mf0NfX6R74Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761207766</pqid></control><display><type>article</type><title>On the limit of conditional Spearman’s rho under the common factor model</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Bae, Taehan ; Iscoe, Ian</creator><creatorcontrib>Bae, Taehan ; Iscoe, Ian</creatorcontrib><description>Under the common factor structural model of credit risk, we study a limit of a conditional Spearman’s rho coefficient. The conditioning event is that the common factor stays below a threshold and the limit is taken as the threshold tends to −
∞
. The main result is established through a relation with the classical theory of regular variation. We identify the relationship between the limiting Spearman’s rho and the tail thickness of the distribution function of the common factor. In particular, a necessary condition for the limiting Spearman’s rho to be strictly less than 1, is that the inverse cumulative distribution function of the common random variable is slowly varying at zero. As an illustration, the calculation of Stress Value-at-Risk for portfolio credit losses is discussed.</description><identifier>ISSN: 1386-1999</identifier><identifier>EISSN: 1572-915X</identifier><identifier>DOI: 10.1007/s10687-015-0231-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Civil Engineering ; Conditioning ; Constraining ; Credit risk ; Distribution functions ; Economics ; Environmental Management ; Finance ; Hydrogeology ; Illustrations ; Insurance ; Inverse ; Management ; Mathematical analysis ; Mathematical models ; Mathematics and Statistics ; Normal distribution ; Portfolio management ; Principal components analysis ; Quality Control ; Random variables ; Reliability ; Risk management ; Safety and Risk ; Statistics ; Statistics for Business ; Studies ; Thresholds</subject><ispartof>Extremes (Boston), 2016-03, Vol.19 (1), p.51-78</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-f811c8110b7b0cb70aa39e97960bb71a6f4609f093ef12053459571d46fe7ae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10687-015-0231-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10687-015-0231-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bae, Taehan</creatorcontrib><creatorcontrib>Iscoe, Ian</creatorcontrib><title>On the limit of conditional Spearman’s rho under the common factor model</title><title>Extremes (Boston)</title><addtitle>Extremes</addtitle><description>Under the common factor structural model of credit risk, we study a limit of a conditional Spearman’s rho coefficient. The conditioning event is that the common factor stays below a threshold and the limit is taken as the threshold tends to −
∞
. The main result is established through a relation with the classical theory of regular variation. We identify the relationship between the limiting Spearman’s rho and the tail thickness of the distribution function of the common factor. In particular, a necessary condition for the limiting Spearman’s rho to be strictly less than 1, is that the inverse cumulative distribution function of the common random variable is slowly varying at zero. As an illustration, the calculation of Stress Value-at-Risk for portfolio credit losses is discussed.</description><subject>Civil Engineering</subject><subject>Conditioning</subject><subject>Constraining</subject><subject>Credit risk</subject><subject>Distribution functions</subject><subject>Economics</subject><subject>Environmental Management</subject><subject>Finance</subject><subject>Hydrogeology</subject><subject>Illustrations</subject><subject>Insurance</subject><subject>Inverse</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Normal distribution</subject><subject>Portfolio management</subject><subject>Principal components analysis</subject><subject>Quality Control</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Risk management</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Thresholds</subject><issn>1386-1999</issn><issn>1572-915X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kL1KBDEURoMouK4-gF3AxiaaO9kkm1IWf1mwUMEuZDKJO8vMZE1mCjtfw9fzScw6FiJYXO4tzvfBPQgdAz0DSuV5AirmklDghBYMCNtBE-CyIAr4826-2VwQUErto4OU1jRnQPAJurvvcL9yuKnbusfBYxu6qu7r0JkGP2ycia3pPt8_Eo6rgIeucvGbt6FtQ4e9sX2IuA2Vaw7RnjdNckc_e4qeri4fFzdkeX99u7hYEssk9MTPAWweWsqS2lJSY5hySipBy1KCEX4mqPJUMeehoJzNuOISqpnwThoHbIpOx95NDK-DS71u62Rd05jOhSFpkIoVnDFOM3ryB12HIebXtpTI7VIKkSkYKRtDStF5vYl1a-KbBqq3dvVoV2e7emtXs5wpxkzKbPfi4q_mf0NfX6R74Q</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Bae, Taehan</creator><creator>Iscoe, Ian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>On the limit of conditional Spearman’s rho under the common factor model</title><author>Bae, Taehan ; Iscoe, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-f811c8110b7b0cb70aa39e97960bb71a6f4609f093ef12053459571d46fe7ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Civil Engineering</topic><topic>Conditioning</topic><topic>Constraining</topic><topic>Credit risk</topic><topic>Distribution functions</topic><topic>Economics</topic><topic>Environmental Management</topic><topic>Finance</topic><topic>Hydrogeology</topic><topic>Illustrations</topic><topic>Insurance</topic><topic>Inverse</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Normal distribution</topic><topic>Portfolio management</topic><topic>Principal components analysis</topic><topic>Quality Control</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Risk management</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Taehan</creatorcontrib><creatorcontrib>Iscoe, Ian</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Extremes (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Taehan</au><au>Iscoe, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the limit of conditional Spearman’s rho under the common factor model</atitle><jtitle>Extremes (Boston)</jtitle><stitle>Extremes</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>19</volume><issue>1</issue><spage>51</spage><epage>78</epage><pages>51-78</pages><issn>1386-1999</issn><eissn>1572-915X</eissn><abstract>Under the common factor structural model of credit risk, we study a limit of a conditional Spearman’s rho coefficient. The conditioning event is that the common factor stays below a threshold and the limit is taken as the threshold tends to −
∞
. The main result is established through a relation with the classical theory of regular variation. We identify the relationship between the limiting Spearman’s rho and the tail thickness of the distribution function of the common factor. In particular, a necessary condition for the limiting Spearman’s rho to be strictly less than 1, is that the inverse cumulative distribution function of the common random variable is slowly varying at zero. As an illustration, the calculation of Stress Value-at-Risk for portfolio credit losses is discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10687-015-0231-3</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-1999 |
ispartof | Extremes (Boston), 2016-03, Vol.19 (1), p.51-78 |
issn | 1386-1999 1572-915X |
language | eng |
recordid | cdi_proquest_miscellaneous_1793253350 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Civil Engineering Conditioning Constraining Credit risk Distribution functions Economics Environmental Management Finance Hydrogeology Illustrations Insurance Inverse Management Mathematical analysis Mathematical models Mathematics and Statistics Normal distribution Portfolio management Principal components analysis Quality Control Random variables Reliability Risk management Safety and Risk Statistics Statistics for Business Studies Thresholds |
title | On the limit of conditional Spearman’s rho under the common factor model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20limit%20of%20conditional%20Spearman%E2%80%99s%20rho%20under%20the%20common%20factor%20model&rft.jtitle=Extremes%20(Boston)&rft.au=Bae,%20Taehan&rft.date=2016-03-01&rft.volume=19&rft.issue=1&rft.spage=51&rft.epage=78&rft.pages=51-78&rft.issn=1386-1999&rft.eissn=1572-915X&rft_id=info:doi/10.1007/s10687-015-0231-3&rft_dat=%3Cproquest_cross%3E3937127571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761207766&rft_id=info:pmid/&rfr_iscdi=true |