Autoscanning for coupled scene reconstruction and proactive object analysis
Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably coupled with scene analysis at the required level of detail. We develop a framewo...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2015-11, Vol.34 (6), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 34 |
creator | Xu, Kai Huang, Hui Shi, Yifei Li, Hao Long, Pinxin Caichen, Jianong Sun, Wei Chen, Baoquan |
description | Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably
coupled
with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be
object-aware
, guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative
analyze-and-validate
algorithm which interleaves between object analysis and guided validations.
The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs
proactive
validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity. |
doi_str_mv | 10.1145/2816795.2818075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793253346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793253346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</originalsourceid><addsrcrecordid>eNotkM1LAzEUxIMoWKtnrzl62Tbf2RxL8QsLXnoPSfatbNkmNdkV-t8bsafhDfOG4YfQIyUrSoVcs5YqbeSqaku0vEILKqVuNFftNVoQzUlDOKG36K6UAyFECaEW6GMzT6kEF-MQv3CfMg5pPo3Q4RIgAs4QUixTnsM0pIhd7PApJ1evH8DJHyBM1XTjuQzlHt30bizwcNEl2r8877dvze7z9X272TWBaTE1KoDiHeHgeKCq9UZqwnQPzKteSQOCE-M1BOFdx7hmELw3tD4ZLnvl-BI9_dfWId8zlMkehzp2HF2ENBdLteFMci5Uja7_oyGnUjL09pSHo8tnS4n9o2Yv1OyFGv8FJmVgfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793253346</pqid></control><display><type>article</type><title>Autoscanning for coupled scene reconstruction and proactive object analysis</title><source>ACM Digital Library Complete</source><creator>Xu, Kai ; Huang, Hui ; Shi, Yifei ; Li, Hao ; Long, Pinxin ; Caichen, Jianong ; Sun, Wei ; Chen, Baoquan</creator><creatorcontrib>Xu, Kai ; Huang, Hui ; Shi, Yifei ; Li, Hao ; Long, Pinxin ; Caichen, Jianong ; Sun, Wei ; Chen, Baoquan</creatorcontrib><description>Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably
coupled
with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be
object-aware
, guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative
analyze-and-validate
algorithm which interleaves between object analysis and guided validations.
The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs
proactive
validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2816795.2818075</identifier><language>eng</language><subject>Autonomous ; Human ; Joining ; Reconstruction ; Robots ; Scene analysis ; Segmentation ; Uncertainty</subject><ispartof>ACM transactions on graphics, 2015-11, Vol.34 (6), p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</citedby><cites>FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Shi, Yifei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Long, Pinxin</creatorcontrib><creatorcontrib>Caichen, Jianong</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Chen, Baoquan</creatorcontrib><title>Autoscanning for coupled scene reconstruction and proactive object analysis</title><title>ACM transactions on graphics</title><description>Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably
coupled
with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be
object-aware
, guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative
analyze-and-validate
algorithm which interleaves between object analysis and guided validations.
The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs
proactive
validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.</description><subject>Autonomous</subject><subject>Human</subject><subject>Joining</subject><subject>Reconstruction</subject><subject>Robots</subject><subject>Scene analysis</subject><subject>Segmentation</subject><subject>Uncertainty</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkM1LAzEUxIMoWKtnrzl62Tbf2RxL8QsLXnoPSfatbNkmNdkV-t8bsafhDfOG4YfQIyUrSoVcs5YqbeSqaku0vEILKqVuNFftNVoQzUlDOKG36K6UAyFECaEW6GMzT6kEF-MQv3CfMg5pPo3Q4RIgAs4QUixTnsM0pIhd7PApJ1evH8DJHyBM1XTjuQzlHt30bizwcNEl2r8877dvze7z9X272TWBaTE1KoDiHeHgeKCq9UZqwnQPzKteSQOCE-M1BOFdx7hmELw3tD4ZLnvl-BI9_dfWId8zlMkehzp2HF2ENBdLteFMci5Uja7_oyGnUjL09pSHo8tnS4n9o2Yv1OyFGv8FJmVgfA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Xu, Kai</creator><creator>Huang, Hui</creator><creator>Shi, Yifei</creator><creator>Li, Hao</creator><creator>Long, Pinxin</creator><creator>Caichen, Jianong</creator><creator>Sun, Wei</creator><creator>Chen, Baoquan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>Autoscanning for coupled scene reconstruction and proactive object analysis</title><author>Xu, Kai ; Huang, Hui ; Shi, Yifei ; Li, Hao ; Long, Pinxin ; Caichen, Jianong ; Sun, Wei ; Chen, Baoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Autonomous</topic><topic>Human</topic><topic>Joining</topic><topic>Reconstruction</topic><topic>Robots</topic><topic>Scene analysis</topic><topic>Segmentation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Shi, Yifei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Long, Pinxin</creatorcontrib><creatorcontrib>Caichen, Jianong</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Chen, Baoquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kai</au><au>Huang, Hui</au><au>Shi, Yifei</au><au>Li, Hao</au><au>Long, Pinxin</au><au>Caichen, Jianong</au><au>Sun, Wei</au><au>Chen, Baoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoscanning for coupled scene reconstruction and proactive object analysis</atitle><jtitle>ACM transactions on graphics</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>34</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably
coupled
with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be
object-aware
, guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative
analyze-and-validate
algorithm which interleaves between object analysis and guided validations.
The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs
proactive
validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.</abstract><doi>10.1145/2816795.2818075</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2015-11, Vol.34 (6), p.1-14 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793253346 |
source | ACM Digital Library Complete |
subjects | Autonomous Human Joining Reconstruction Robots Scene analysis Segmentation Uncertainty |
title | Autoscanning for coupled scene reconstruction and proactive object analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoscanning%20for%20coupled%20scene%20reconstruction%20and%20proactive%20object%20analysis&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Xu,%20Kai&rft.date=2015-11-01&rft.volume=34&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2816795.2818075&rft_dat=%3Cproquest_cross%3E1793253346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793253346&rft_id=info:pmid/&rfr_iscdi=true |