Autoscanning for coupled scene reconstruction and proactive object analysis

Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably coupled with scene analysis at the required level of detail. We develop a framewo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2015-11, Vol.34 (6), p.1-14
Hauptverfasser: Xu, Kai, Huang, Hui, Shi, Yifei, Li, Hao, Long, Pinxin, Caichen, Jianong, Sun, Wei, Chen, Baoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 6
container_start_page 1
container_title ACM transactions on graphics
container_volume 34
creator Xu, Kai
Huang, Hui
Shi, Yifei
Li, Hao
Long, Pinxin
Caichen, Jianong
Sun, Wei
Chen, Baoquan
description Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably coupled with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be object-aware , guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative analyze-and-validate algorithm which interleaves between object analysis and guided validations. The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs proactive validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.
doi_str_mv 10.1145/2816795.2818075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793253346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793253346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</originalsourceid><addsrcrecordid>eNotkM1LAzEUxIMoWKtnrzl62Tbf2RxL8QsLXnoPSfatbNkmNdkV-t8bsafhDfOG4YfQIyUrSoVcs5YqbeSqaku0vEILKqVuNFftNVoQzUlDOKG36K6UAyFECaEW6GMzT6kEF-MQv3CfMg5pPo3Q4RIgAs4QUixTnsM0pIhd7PApJ1evH8DJHyBM1XTjuQzlHt30bizwcNEl2r8877dvze7z9X272TWBaTE1KoDiHeHgeKCq9UZqwnQPzKteSQOCE-M1BOFdx7hmELw3tD4ZLnvl-BI9_dfWId8zlMkehzp2HF2ENBdLteFMci5Uja7_oyGnUjL09pSHo8tnS4n9o2Yv1OyFGv8FJmVgfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793253346</pqid></control><display><type>article</type><title>Autoscanning for coupled scene reconstruction and proactive object analysis</title><source>ACM Digital Library Complete</source><creator>Xu, Kai ; Huang, Hui ; Shi, Yifei ; Li, Hao ; Long, Pinxin ; Caichen, Jianong ; Sun, Wei ; Chen, Baoquan</creator><creatorcontrib>Xu, Kai ; Huang, Hui ; Shi, Yifei ; Li, Hao ; Long, Pinxin ; Caichen, Jianong ; Sun, Wei ; Chen, Baoquan</creatorcontrib><description>Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably coupled with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be object-aware , guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative analyze-and-validate algorithm which interleaves between object analysis and guided validations. The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs proactive validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2816795.2818075</identifier><language>eng</language><subject>Autonomous ; Human ; Joining ; Reconstruction ; Robots ; Scene analysis ; Segmentation ; Uncertainty</subject><ispartof>ACM transactions on graphics, 2015-11, Vol.34 (6), p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</citedby><cites>FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Shi, Yifei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Long, Pinxin</creatorcontrib><creatorcontrib>Caichen, Jianong</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Chen, Baoquan</creatorcontrib><title>Autoscanning for coupled scene reconstruction and proactive object analysis</title><title>ACM transactions on graphics</title><description>Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably coupled with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be object-aware , guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative analyze-and-validate algorithm which interleaves between object analysis and guided validations. The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs proactive validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.</description><subject>Autonomous</subject><subject>Human</subject><subject>Joining</subject><subject>Reconstruction</subject><subject>Robots</subject><subject>Scene analysis</subject><subject>Segmentation</subject><subject>Uncertainty</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkM1LAzEUxIMoWKtnrzl62Tbf2RxL8QsLXnoPSfatbNkmNdkV-t8bsafhDfOG4YfQIyUrSoVcs5YqbeSqaku0vEILKqVuNFftNVoQzUlDOKG36K6UAyFECaEW6GMzT6kEF-MQv3CfMg5pPo3Q4RIgAs4QUixTnsM0pIhd7PApJ1evH8DJHyBM1XTjuQzlHt30bizwcNEl2r8877dvze7z9X272TWBaTE1KoDiHeHgeKCq9UZqwnQPzKteSQOCE-M1BOFdx7hmELw3tD4ZLnvl-BI9_dfWId8zlMkehzp2HF2ENBdLteFMci5Uja7_oyGnUjL09pSHo8tnS4n9o2Yv1OyFGv8FJmVgfA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Xu, Kai</creator><creator>Huang, Hui</creator><creator>Shi, Yifei</creator><creator>Li, Hao</creator><creator>Long, Pinxin</creator><creator>Caichen, Jianong</creator><creator>Sun, Wei</creator><creator>Chen, Baoquan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>Autoscanning for coupled scene reconstruction and proactive object analysis</title><author>Xu, Kai ; Huang, Hui ; Shi, Yifei ; Li, Hao ; Long, Pinxin ; Caichen, Jianong ; Sun, Wei ; Chen, Baoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-6ce63d03ea3c168b957027fe2b6f659e4309b7ec4bad2372ecbb91ce6935f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Autonomous</topic><topic>Human</topic><topic>Joining</topic><topic>Reconstruction</topic><topic>Robots</topic><topic>Scene analysis</topic><topic>Segmentation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Shi, Yifei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Long, Pinxin</creatorcontrib><creatorcontrib>Caichen, Jianong</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Chen, Baoquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kai</au><au>Huang, Hui</au><au>Shi, Yifei</au><au>Li, Hao</au><au>Long, Pinxin</au><au>Caichen, Jianong</au><au>Sun, Wei</au><au>Chen, Baoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoscanning for coupled scene reconstruction and proactive object analysis</atitle><jtitle>ACM transactions on graphics</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>34</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Detailed scanning of indoor scenes is tedious for humans. We propose autonomous scene scanning by a robot to relieve humans from such a laborious task. In an autonomous setting, detailed scene acquisition is inevitably coupled with scene analysis at the required level of detail. We develop a framework for object-level scene reconstruction coupled with object-centric scene analysis. As a result, the autoscanning and reconstruction will be object-aware , guided by the object analysis. The analysis is, in turn, gradually improved with progressively increased object-wise data fidelity. In realizing such a framework, we drive the robot to execute an iterative analyze-and-validate algorithm which interleaves between object analysis and guided validations. The object analysis incorporates online learning into a robust graph-cut based segmentation framework, achieving a global update of object-level segmentation based on the knowledge gained from robot-operated local validation. Based on the current analysis, the robot performs proactive validation over the scene with physical push and scan refinement, aiming at reducing the uncertainty of both object-level segmentation and object-wise reconstruction. We propose a joint entropy to measure such uncertainty based on segmentation confidence and reconstruction quality, and formulate the selection of validation actions as a maximum information gain problem. The output of our system is a reconstructed scene with both object extraction and object-wise geometry fidelity.</abstract><doi>10.1145/2816795.2818075</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2015-11, Vol.34 (6), p.1-14
issn 0730-0301
1557-7368
language eng
recordid cdi_proquest_miscellaneous_1793253346
source ACM Digital Library Complete
subjects Autonomous
Human
Joining
Reconstruction
Robots
Scene analysis
Segmentation
Uncertainty
title Autoscanning for coupled scene reconstruction and proactive object analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoscanning%20for%20coupled%20scene%20reconstruction%20and%20proactive%20object%20analysis&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Xu,%20Kai&rft.date=2015-11-01&rft.volume=34&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2816795.2818075&rft_dat=%3Cproquest_cross%3E1793253346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793253346&rft_id=info:pmid/&rfr_iscdi=true