Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites

Powders of W–ZrC and W–Zr(CN) were carbothermally synthesized in situ from milled mixtures of graphite, WO3 and ZrO2. The thermal stability of Zr(CN) in a W matrix was simulated and compared with that of ZrC in W in terms of free energy change and carbide coarsening. Carbon and nitrogen had high mut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2015-10, Vol.647, p.1048-1053
Hauptverfasser: Kim, Jae-Hee, Zhe, Gao, Lim, Jaehyuk, Park, Choongkwon, Kang, Shinhoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue
container_start_page 1048
container_title Journal of alloys and compounds
container_volume 647
creator Kim, Jae-Hee
Zhe, Gao
Lim, Jaehyuk
Park, Choongkwon
Kang, Shinhoo
description Powders of W–ZrC and W–Zr(CN) were carbothermally synthesized in situ from milled mixtures of graphite, WO3 and ZrO2. The thermal stability of Zr(CN) in a W matrix was simulated and compared with that of ZrC in W in terms of free energy change and carbide coarsening. Carbon and nitrogen had high mutual affinity in Zr(CN) of B1 crystal structure, which led their activity curves to exhibit strong negative deviation from ideal mixing behavior. Zr(CN) was more stable than ZrC up to 2075 K; however, a microstructural study showed that it became less stable than ZrC at around 1975 K. This result is attributed to the decreasing thermodynamic stability of ZrN with increasing temperature. Other transition metal carbonitrides containing group 4–6 elements are expected to show similar coarsening behaviors at high temperatures. [Display omitted] •The Zr(CN) phase formed due to the high affinity between C and N in ZrC.•A complete reversal of the slope is found in the formation energy curves.•The growth of the carbonitride is due to the nitrogen, reducing the stability.•Solid solutions containing group 4 elements would show similar growth behavior.
doi_str_mv 10.1016/j.jallcom.2015.06.117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793252244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838815302346</els_id><sourcerecordid>1793252244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-8b7df1ac92872f4e419b8696dd15a2a72b30438339e06daf5b66fe8f4e654373</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-gtDluGjNrWmyEqlXGHQzILgJaZJiStuMSUeYne_gG_okZpjZuzpn8f3_4XwAXCJYIIjYdVd0qu-1HwoMUVlAViBUHYEZ4hXJKWPiGMygwGXOCeen4CzGDkKIBEEzcLf6sGHwZjuqweksTqpxvZu2mW8zN2bRTZvs7ff75z3UmRrNYV_UL1dZOrj2CbDxHJy0qo_24jDnYPVwv6qf8uXr43N9u8w1oXjKeVOZFiktMK9wSy1FouFMMGNQqbCqcEMgJZwQYSEzqi0bxlrLE8lKSioyB4t97Tr4z42Nkxxc1Lbv1Wj9JkpUCYJLjClNaLlHdfAxBtvKdXCDCluJoNxJk508SJM7aRIymaSl3M0-Z9MbX84GGbWzo7bGBasnabz7p-EPPj941w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793252244</pqid></control><display><type>article</type><title>Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Jae-Hee ; Zhe, Gao ; Lim, Jaehyuk ; Park, Choongkwon ; Kang, Shinhoo</creator><creatorcontrib>Kim, Jae-Hee ; Zhe, Gao ; Lim, Jaehyuk ; Park, Choongkwon ; Kang, Shinhoo</creatorcontrib><description>Powders of W–ZrC and W–Zr(CN) were carbothermally synthesized in situ from milled mixtures of graphite, WO3 and ZrO2. The thermal stability of Zr(CN) in a W matrix was simulated and compared with that of ZrC in W in terms of free energy change and carbide coarsening. Carbon and nitrogen had high mutual affinity in Zr(CN) of B1 crystal structure, which led their activity curves to exhibit strong negative deviation from ideal mixing behavior. Zr(CN) was more stable than ZrC up to 2075 K; however, a microstructural study showed that it became less stable than ZrC at around 1975 K. This result is attributed to the decreasing thermodynamic stability of ZrN with increasing temperature. Other transition metal carbonitrides containing group 4–6 elements are expected to show similar coarsening behaviors at high temperatures. [Display omitted] •The Zr(CN) phase formed due to the high affinity between C and N in ZrC.•A complete reversal of the slope is found in the formation energy curves.•The growth of the carbonitride is due to the nitrogen, reducing the stability.•Solid solutions containing group 4 elements would show similar growth behavior.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2015.06.117</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carbon ; Coarsening ; Deviation ; Particulate composites ; Powder metallurgy ; Stability ; Thermodynamic modeling ; Thermodynamic properties ; Thermodynamics ; Transition metal alloys and compounds ; Tungsten oxides ; Zirconium dioxide</subject><ispartof>Journal of alloys and compounds, 2015-10, Vol.647, p.1048-1053</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-8b7df1ac92872f4e419b8696dd15a2a72b30438339e06daf5b66fe8f4e654373</citedby><cites>FETCH-LOGICAL-c342t-8b7df1ac92872f4e419b8696dd15a2a72b30438339e06daf5b66fe8f4e654373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2015.06.117$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kim, Jae-Hee</creatorcontrib><creatorcontrib>Zhe, Gao</creatorcontrib><creatorcontrib>Lim, Jaehyuk</creatorcontrib><creatorcontrib>Park, Choongkwon</creatorcontrib><creatorcontrib>Kang, Shinhoo</creatorcontrib><title>Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites</title><title>Journal of alloys and compounds</title><description>Powders of W–ZrC and W–Zr(CN) were carbothermally synthesized in situ from milled mixtures of graphite, WO3 and ZrO2. The thermal stability of Zr(CN) in a W matrix was simulated and compared with that of ZrC in W in terms of free energy change and carbide coarsening. Carbon and nitrogen had high mutual affinity in Zr(CN) of B1 crystal structure, which led their activity curves to exhibit strong negative deviation from ideal mixing behavior. Zr(CN) was more stable than ZrC up to 2075 K; however, a microstructural study showed that it became less stable than ZrC at around 1975 K. This result is attributed to the decreasing thermodynamic stability of ZrN with increasing temperature. Other transition metal carbonitrides containing group 4–6 elements are expected to show similar coarsening behaviors at high temperatures. [Display omitted] •The Zr(CN) phase formed due to the high affinity between C and N in ZrC.•A complete reversal of the slope is found in the formation energy curves.•The growth of the carbonitride is due to the nitrogen, reducing the stability.•Solid solutions containing group 4 elements would show similar growth behavior.</description><subject>Carbon</subject><subject>Coarsening</subject><subject>Deviation</subject><subject>Particulate composites</subject><subject>Powder metallurgy</subject><subject>Stability</subject><subject>Thermodynamic modeling</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transition metal alloys and compounds</subject><subject>Tungsten oxides</subject><subject>Zirconium dioxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-gtDluGjNrWmyEqlXGHQzILgJaZJiStuMSUeYne_gG_okZpjZuzpn8f3_4XwAXCJYIIjYdVd0qu-1HwoMUVlAViBUHYEZ4hXJKWPiGMygwGXOCeen4CzGDkKIBEEzcLf6sGHwZjuqweksTqpxvZu2mW8zN2bRTZvs7ff75z3UmRrNYV_UL1dZOrj2CbDxHJy0qo_24jDnYPVwv6qf8uXr43N9u8w1oXjKeVOZFiktMK9wSy1FouFMMGNQqbCqcEMgJZwQYSEzqi0bxlrLE8lKSioyB4t97Tr4z42Nkxxc1Lbv1Wj9JkpUCYJLjClNaLlHdfAxBtvKdXCDCluJoNxJk508SJM7aRIymaSl3M0-Z9MbX84GGbWzo7bGBasnabz7p-EPPj941w</recordid><startdate>20151025</startdate><enddate>20151025</enddate><creator>Kim, Jae-Hee</creator><creator>Zhe, Gao</creator><creator>Lim, Jaehyuk</creator><creator>Park, Choongkwon</creator><creator>Kang, Shinhoo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20151025</creationdate><title>Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites</title><author>Kim, Jae-Hee ; Zhe, Gao ; Lim, Jaehyuk ; Park, Choongkwon ; Kang, Shinhoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-8b7df1ac92872f4e419b8696dd15a2a72b30438339e06daf5b66fe8f4e654373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon</topic><topic>Coarsening</topic><topic>Deviation</topic><topic>Particulate composites</topic><topic>Powder metallurgy</topic><topic>Stability</topic><topic>Thermodynamic modeling</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transition metal alloys and compounds</topic><topic>Tungsten oxides</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Hee</creatorcontrib><creatorcontrib>Zhe, Gao</creatorcontrib><creatorcontrib>Lim, Jaehyuk</creatorcontrib><creatorcontrib>Park, Choongkwon</creatorcontrib><creatorcontrib>Kang, Shinhoo</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Hee</au><au>Zhe, Gao</au><au>Lim, Jaehyuk</au><au>Park, Choongkwon</au><au>Kang, Shinhoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2015-10-25</date><risdate>2015</risdate><volume>647</volume><spage>1048</spage><epage>1053</epage><pages>1048-1053</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Powders of W–ZrC and W–Zr(CN) were carbothermally synthesized in situ from milled mixtures of graphite, WO3 and ZrO2. The thermal stability of Zr(CN) in a W matrix was simulated and compared with that of ZrC in W in terms of free energy change and carbide coarsening. Carbon and nitrogen had high mutual affinity in Zr(CN) of B1 crystal structure, which led their activity curves to exhibit strong negative deviation from ideal mixing behavior. Zr(CN) was more stable than ZrC up to 2075 K; however, a microstructural study showed that it became less stable than ZrC at around 1975 K. This result is attributed to the decreasing thermodynamic stability of ZrN with increasing temperature. Other transition metal carbonitrides containing group 4–6 elements are expected to show similar coarsening behaviors at high temperatures. [Display omitted] •The Zr(CN) phase formed due to the high affinity between C and N in ZrC.•A complete reversal of the slope is found in the formation energy curves.•The growth of the carbonitride is due to the nitrogen, reducing the stability.•Solid solutions containing group 4 elements would show similar growth behavior.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2015.06.117</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2015-10, Vol.647, p.1048-1053
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1793252244
source Elsevier ScienceDirect Journals
subjects Carbon
Coarsening
Deviation
Particulate composites
Powder metallurgy
Stability
Thermodynamic modeling
Thermodynamic properties
Thermodynamics
Transition metal alloys and compounds
Tungsten oxides
Zirconium dioxide
title Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20stability%20of%20in%20situ%20W%E2%80%93ZrC%20and%20W%E2%80%93Zr(CN)%20composites&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kim,%20Jae-Hee&rft.date=2015-10-25&rft.volume=647&rft.spage=1048&rft.epage=1053&rft.pages=1048-1053&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2015.06.117&rft_dat=%3Cproquest_cross%3E1793252244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793252244&rft_id=info:pmid/&rft_els_id=S0925838815302346&rfr_iscdi=true