Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation

A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-02, Vol.88 (3), p.1794-1803
Hauptverfasser: Ornthai, Mathuros, Siripinyanond, Atitaya, Gale, Bruce K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1803
container_issue 3
container_start_page 1794
container_title Analytical chemistry (Washington)
container_volume 88
creator Ornthai, Mathuros
Siripinyanond, Atitaya
Gale, Bruce K
description A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275–299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.
doi_str_mv 10.1021/acs.analchem.5b04082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793250272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3953120141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-fecada0968efbc71dd29dd90ab58eeb246033350eaa228b3fe7319bbd62c1b83</originalsourceid><addsrcrecordid>eNqNkctKw0AUhgdRbK2-gUjAjZvUMzPJZLKU0mih6Kb7cOYSTMmlzjSIb-_0ooILcTMX-P7_wPkIuaYwpcDoPWo_xQ4b_WrbaaogAclOyJimDGIhJTslYwDgMcsARuTC-zUApUDFORkxkYGkNB2T5byqrN5GfRUt-q7WEXYmeg6v_WeGztXW-ajuonkTOFdrbKKito2Ji6Z_jwqHehtg3B2X5KzCxtur4z0hq2K-mj3Fy5fHxexhGWOSiG0cBqJByIW0ldIZNYblxuSAKpXWKpYI4JynYBEZk4pXNuM0V8oIpqmSfELuDrUb178N1m_LtvbaNg12th98SbOcsxRYxv6BCsaTlEsa0Ntf6LofXFjwnkopz7MEApUcKO16752tyo2rW3QfJYVy56UMXsovL-XRS4jdHMsH1VrzHfoSEQA4ALv4z-C_Oj8Brs6baQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765139740</pqid></control><display><type>article</type><title>Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Ornthai, Mathuros ; Siripinyanond, Atitaya ; Gale, Bruce K</creator><creatorcontrib>Ornthai, Mathuros ; Siripinyanond, Atitaya ; Gale, Bruce K</creatorcontrib><description>A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275–299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b04082</identifier><identifier>PMID: 26708115</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>2-Propanol - chemistry ; Biological ; Biological effects ; Biological materials ; Carriers ; Conductivity ; Current carriers ; Electric fields ; Electricity ; Electrodes ; Fractionation ; Fractionation, Field Flow ; Ions - chemistry ; Nonionic ; Phosphates - chemistry ; Separation ; Sodium Chloride - chemistry ; Sucrose ; Sucrose - chemistry</subject><ispartof>Analytical chemistry (Washington), 2016-02, Vol.88 (3), p.1794-1803</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 2, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-fecada0968efbc71dd29dd90ab58eeb246033350eaa228b3fe7319bbd62c1b83</citedby><cites>FETCH-LOGICAL-a446t-fecada0968efbc71dd29dd90ab58eeb246033350eaa228b3fe7319bbd62c1b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b04082$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b04082$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26708115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ornthai, Mathuros</creatorcontrib><creatorcontrib>Siripinyanond, Atitaya</creatorcontrib><creatorcontrib>Gale, Bruce K</creatorcontrib><title>Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275–299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.</description><subject>2-Propanol - chemistry</subject><subject>Biological</subject><subject>Biological effects</subject><subject>Biological materials</subject><subject>Carriers</subject><subject>Conductivity</subject><subject>Current carriers</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Fractionation</subject><subject>Fractionation, Field Flow</subject><subject>Ions - chemistry</subject><subject>Nonionic</subject><subject>Phosphates - chemistry</subject><subject>Separation</subject><subject>Sodium Chloride - chemistry</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKw0AUhgdRbK2-gUjAjZvUMzPJZLKU0mih6Kb7cOYSTMmlzjSIb-_0ooILcTMX-P7_wPkIuaYwpcDoPWo_xQ4b_WrbaaogAclOyJimDGIhJTslYwDgMcsARuTC-zUApUDFORkxkYGkNB2T5byqrN5GfRUt-q7WEXYmeg6v_WeGztXW-ajuonkTOFdrbKKito2Ji6Z_jwqHehtg3B2X5KzCxtur4z0hq2K-mj3Fy5fHxexhGWOSiG0cBqJByIW0ldIZNYblxuSAKpXWKpYI4JynYBEZk4pXNuM0V8oIpqmSfELuDrUb178N1m_LtvbaNg12th98SbOcsxRYxv6BCsaTlEsa0Ntf6LofXFjwnkopz7MEApUcKO16752tyo2rW3QfJYVy56UMXsovL-XRS4jdHMsH1VrzHfoSEQA4ALv4z-C_Oj8Brs6baQ</recordid><startdate>20160202</startdate><enddate>20160202</enddate><creator>Ornthai, Mathuros</creator><creator>Siripinyanond, Atitaya</creator><creator>Gale, Bruce K</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160202</creationdate><title>Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation</title><author>Ornthai, Mathuros ; Siripinyanond, Atitaya ; Gale, Bruce K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-fecada0968efbc71dd29dd90ab58eeb246033350eaa228b3fe7319bbd62c1b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>2-Propanol - chemistry</topic><topic>Biological</topic><topic>Biological effects</topic><topic>Biological materials</topic><topic>Carriers</topic><topic>Conductivity</topic><topic>Current carriers</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Fractionation</topic><topic>Fractionation, Field Flow</topic><topic>Ions - chemistry</topic><topic>Nonionic</topic><topic>Phosphates - chemistry</topic><topic>Separation</topic><topic>Sodium Chloride - chemistry</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ornthai, Mathuros</creatorcontrib><creatorcontrib>Siripinyanond, Atitaya</creatorcontrib><creatorcontrib>Gale, Bruce K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ornthai, Mathuros</au><au>Siripinyanond, Atitaya</au><au>Gale, Bruce K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-02-02</date><risdate>2016</risdate><volume>88</volume><issue>3</issue><spage>1794</spage><epage>1803</epage><pages>1794-1803</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275–299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26708115</pmid><doi>10.1021/acs.analchem.5b04082</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-02, Vol.88 (3), p.1794-1803
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1793250272
source MEDLINE; American Chemical Society Publications
subjects 2-Propanol - chemistry
Biological
Biological effects
Biological materials
Carriers
Conductivity
Current carriers
Electric fields
Electricity
Electrodes
Fractionation
Fractionation, Field Flow
Ions - chemistry
Nonionic
Phosphates - chemistry
Separation
Sodium Chloride - chemistry
Sucrose
Sucrose - chemistry
title Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Ionic%20and%20Nonionic%20Carriers%20in%20Electrical%20Field-Flow%20Fractionation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ornthai,%20Mathuros&rft.date=2016-02-02&rft.volume=88&rft.issue=3&rft.spage=1794&rft.epage=1803&rft.pages=1794-1803&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b04082&rft_dat=%3Cproquest_cross%3E3953120141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765139740&rft_id=info:pmid/26708115&rfr_iscdi=true