Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids

It is known that size alone, which is often defined as the volume-equivalent diameter, is not sufficient to characterize many particulate products. The shape of crystalline products can be as important as size in many applications, Traditionally, particulate shape is often defined by several simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Particuology 2016-02, Vol.24 (1), p.61-68
Hauptverfasser: Zhang, Yang, Liu, Jing J., Zhang, Lei, De Anda, Jorge Calderon, Wang, Xue Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 61
container_title Particuology
container_volume 24
creator Zhang, Yang
Liu, Jing J.
Zhang, Lei
De Anda, Jorge Calderon
Wang, Xue Z.
description It is known that size alone, which is often defined as the volume-equivalent diameter, is not sufficient to characterize many particulate products. The shape of crystalline products can be as important as size in many applications, Traditionally, particulate shape is often defined by several simple descriptors such as the maximum length and the aspect ratio. Although these descriptors are intuitive, they result in a loss of information about the original shape. This paper presents a method to use principal component analysis to derive simple latent shape descriptors from microscope images of particulate products made in batch processes, and the use of these descriptors to identify batch-to-batch variations. Data from batch runs of both a laboratory crystalliser and an industrial crystallisation reactor are analysed using the described approach. Qualitative and quantitative comparisons with the use of traditional shape descriptors that have nhwical meanings and Fourier shape descriptors are also made.
doi_str_mv 10.1016/j.partic.2014.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793249743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>667934518</cqvip_id><els_id>S1674200115000875</els_id><sourcerecordid>1793249743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-975a9d368034395af87cfc61acc5002eab85b180e4604f6db970d60bc5c0232e3</originalsourceid><addsrcrecordid>eNqFkM1u1TAQhS0EEpe2b9CFxYpNwvgnTrJBQhUFpEqwgLXlTCa9vkri1HaQ-hI8c3Obii2rkUbnfDPnMHYtoBQgzMdTubiYPZYShC6FLEHIV-wgpYBCy1a8Zgdhal1IAPGWvUvpBGCkkerA_v58do7E09EtxPHoosNM0SeXfZi5m3uOo0vJDx731Zr8fM_dmsPkMvV88hhDwrA8Pqt3UE8Jo19yiIn7mXcu45FPbl6HDb9G4mHg-9fruFF4CqPv0yV7M7gx0dXLvGC_b7_8uvlW3P34-v3m812BupG5aOvKtb0yDSit2soNTY0DGuEQKwBJrmuqTjRA2oAeTN-1NfQGOqwQpJKkLtiHnbvE8LBSynbyCWkc3UxhTVbUrZK6rbXapHqXnkOmSINdop9cfLQC7Ll-e7J7EHuu3wppt_o326fdRluMP56iTehpRup9JMy2D_5_gPcvd49hvn_YKv932JjtPV2JRj0Be5ufgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793249743</pqid></control><display><type>article</type><title>Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Yang ; Liu, Jing J. ; Zhang, Lei ; De Anda, Jorge Calderon ; Wang, Xue Z.</creator><creatorcontrib>Zhang, Yang ; Liu, Jing J. ; Zhang, Lei ; De Anda, Jorge Calderon ; Wang, Xue Z.</creatorcontrib><description>It is known that size alone, which is often defined as the volume-equivalent diameter, is not sufficient to characterize many particulate products. The shape of crystalline products can be as important as size in many applications, Traditionally, particulate shape is often defined by several simple descriptors such as the maximum length and the aspect ratio. Although these descriptors are intuitive, they result in a loss of information about the original shape. This paper presents a method to use principal component analysis to derive simple latent shape descriptors from microscope images of particulate products made in batch processes, and the use of these descriptors to identify batch-to-batch variations. Data from batch runs of both a laboratory crystalliser and an industrial crystallisation reactor are analysed using the described approach. Qualitative and quantitative comparisons with the use of traditional shape descriptors that have nhwical meanings and Fourier shape descriptors are also made.</description><identifier>ISSN: 1674-2001</identifier><identifier>EISSN: 2210-4291</identifier><identifier>DOI: 10.1016/j.partic.2014.12.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Batch-to-batch variation ; Classification ; Crystal structure ; Crystallization ; Fourier analysis ; Microscopes ; Microscopy ; Principal component analysis ; Principal components analysis ; Reactors ; Shape descriptors ; 产品设计 ; 工业通用技术 ; 粉末技术 ; 颗粒学</subject><ispartof>Particuology, 2016-02, Vol.24 (1), p.61-68</ispartof><rights>2015 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-975a9d368034395af87cfc61acc5002eab85b180e4604f6db970d60bc5c0232e3</citedby><cites>FETCH-LOGICAL-c482t-975a9d368034395af87cfc61acc5002eab85b180e4604f6db970d60bc5c0232e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87070X/87070X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.partic.2014.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liu, Jing J.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>De Anda, Jorge Calderon</creatorcontrib><creatorcontrib>Wang, Xue Z.</creatorcontrib><title>Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids</title><title>Particuology</title><addtitle>China Particuology</addtitle><description>It is known that size alone, which is often defined as the volume-equivalent diameter, is not sufficient to characterize many particulate products. The shape of crystalline products can be as important as size in many applications, Traditionally, particulate shape is often defined by several simple descriptors such as the maximum length and the aspect ratio. Although these descriptors are intuitive, they result in a loss of information about the original shape. This paper presents a method to use principal component analysis to derive simple latent shape descriptors from microscope images of particulate products made in batch processes, and the use of these descriptors to identify batch-to-batch variations. Data from batch runs of both a laboratory crystalliser and an industrial crystallisation reactor are analysed using the described approach. Qualitative and quantitative comparisons with the use of traditional shape descriptors that have nhwical meanings and Fourier shape descriptors are also made.</description><subject>Batch-to-batch variation</subject><subject>Classification</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Fourier analysis</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Reactors</subject><subject>Shape descriptors</subject><subject>产品设计</subject><subject>工业通用技术</subject><subject>粉末技术</subject><subject>颗粒学</subject><issn>1674-2001</issn><issn>2210-4291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1TAQhS0EEpe2b9CFxYpNwvgnTrJBQhUFpEqwgLXlTCa9vkri1HaQ-hI8c3Obii2rkUbnfDPnMHYtoBQgzMdTubiYPZYShC6FLEHIV-wgpYBCy1a8Zgdhal1IAPGWvUvpBGCkkerA_v58do7E09EtxPHoosNM0SeXfZi5m3uOo0vJDx731Zr8fM_dmsPkMvV88hhDwrA8Pqt3UE8Jo19yiIn7mXcu45FPbl6HDb9G4mHg-9fruFF4CqPv0yV7M7gx0dXLvGC_b7_8uvlW3P34-v3m812BupG5aOvKtb0yDSit2soNTY0DGuEQKwBJrmuqTjRA2oAeTN-1NfQGOqwQpJKkLtiHnbvE8LBSynbyCWkc3UxhTVbUrZK6rbXapHqXnkOmSINdop9cfLQC7Ll-e7J7EHuu3wppt_o326fdRluMP56iTehpRup9JMy2D_5_gPcvd49hvn_YKv932JjtPV2JRj0Be5ufgQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Zhang, Yang</creator><creator>Liu, Jing J.</creator><creator>Zhang, Lei</creator><creator>De Anda, Jorge Calderon</creator><creator>Wang, Xue Z.</creator><general>Elsevier B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160201</creationdate><title>Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids</title><author>Zhang, Yang ; Liu, Jing J. ; Zhang, Lei ; De Anda, Jorge Calderon ; Wang, Xue Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-975a9d368034395af87cfc61acc5002eab85b180e4604f6db970d60bc5c0232e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Batch-to-batch variation</topic><topic>Classification</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Fourier analysis</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Reactors</topic><topic>Shape descriptors</topic><topic>产品设计</topic><topic>工业通用技术</topic><topic>粉末技术</topic><topic>颗粒学</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Liu, Jing J.</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>De Anda, Jorge Calderon</creatorcontrib><creatorcontrib>Wang, Xue Z.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Particuology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yang</au><au>Liu, Jing J.</au><au>Zhang, Lei</au><au>De Anda, Jorge Calderon</au><au>Wang, Xue Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids</atitle><jtitle>Particuology</jtitle><addtitle>China Particuology</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>24</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1674-2001</issn><eissn>2210-4291</eissn><abstract>It is known that size alone, which is often defined as the volume-equivalent diameter, is not sufficient to characterize many particulate products. The shape of crystalline products can be as important as size in many applications, Traditionally, particulate shape is often defined by several simple descriptors such as the maximum length and the aspect ratio. Although these descriptors are intuitive, they result in a loss of information about the original shape. This paper presents a method to use principal component analysis to derive simple latent shape descriptors from microscope images of particulate products made in batch processes, and the use of these descriptors to identify batch-to-batch variations. Data from batch runs of both a laboratory crystalliser and an industrial crystallisation reactor are analysed using the described approach. Qualitative and quantitative comparisons with the use of traditional shape descriptors that have nhwical meanings and Fourier shape descriptors are also made.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.partic.2014.12.012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-2001
ispartof Particuology, 2016-02, Vol.24 (1), p.61-68
issn 1674-2001
2210-4291
language eng
recordid cdi_proquest_miscellaneous_1793249743
source Elsevier ScienceDirect Journals Complete
subjects Batch-to-batch variation
Classification
Crystal structure
Crystallization
Fourier analysis
Microscopes
Microscopy
Principal component analysis
Principal components analysis
Reactors
Shape descriptors
产品设计
工业通用技术
粉末技术
颗粒学
title Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20shape%20characterisation%20and%20classification%20using%20automated%20microscopy%20and%20shape%20descriptors%20in%20batch%20manufacture%20of%20particulate%20solids&rft.jtitle=Particuology&rft.au=Zhang,%20Yang&rft.date=2016-02-01&rft.volume=24&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1674-2001&rft.eissn=2210-4291&rft_id=info:doi/10.1016/j.partic.2014.12.012&rft_dat=%3Cproquest_cross%3E1793249743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793249743&rft_id=info:pmid/&rft_cqvip_id=667934518&rft_els_id=S1674200115000875&rfr_iscdi=true