Methodology for thermal budget reduction of SPER down to 450 degree C for 3D sequential integration

3D sequential integration enables the full use of the third dimension thanks to its unique contact density far above the possibilities of 3D packaging solutions. However, as the transistors are sequentially stacked over each other, the thermal budget allowed for the fabrication of the top transistor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2016-03, Vol.370, p.14-18
Hauptverfasser: Luce, F P, Pasini, L, Sklenard, B, Mathieu, B, Licitra, C, Batude, P, Mazen, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 14
container_title Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms
container_volume 370
creator Luce, F P
Pasini, L
Sklenard, B
Mathieu, B
Licitra, C
Batude, P
Mazen, F
description 3D sequential integration enables the full use of the third dimension thanks to its unique contact density far above the possibilities of 3D packaging solutions. However, as the transistors are sequentially stacked over each other, the thermal budget allowed for the fabrication of the top transistor is limited by the maximal temperature accepted by the already made bottom one. It was previously described that a thermal budget of T >500 degree C is enough to degrade the bottom transistors performance. So the technological challenge is to develop low temperature routines for the fabrication of the top devices. For that, different processes have to be adapted, mainly the dopant activation step, where the T >1000 degree C spike annealing must be replaced. In this contribution, we present the feasibility to dope by solid phase epitaxial regrowth (SPER) at 450 degree C thin Si films (22nm) containing high dopant concentration of 51020 at/cm3. For n- and p-type dopants, the 450 degree C SPER rendered low sheet resistance values, as low as the ones obtained with the high temperature activation method.
doi_str_mv 10.1016/j.nimb.2015.12.021
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793249315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793249315</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17932493153</originalsourceid><addsrcrecordid>eNqVi7FuwjAURT0UCQr8QKc3dsHYMW5hplQsSFXbgS0K8Uswcvxa21HVv8cgfoC73OGcw9iTFFwK-TI_cW-7Ay-E1FwWXBTygY0yWM70Uu2H7DHGk8jTSo9YvcN0JEOO2n9oKEA6YugqB4fetJggoOnrZMkDNfD1sfkEQ38eEsFCCzDYBkRYX0v1BhF_e_TJ5t76lGF1SSds0FQu4vT2Y_b8vvleb2c_gbIfU9nZWKNzlUfqYylfV6pYrJTU6g71DIeKTn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793249315</pqid></control><display><type>article</type><title>Methodology for thermal budget reduction of SPER down to 450 degree C for 3D sequential integration</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Luce, F P ; Pasini, L ; Sklenard, B ; Mathieu, B ; Licitra, C ; Batude, P ; Mazen, F</creator><creatorcontrib>Luce, F P ; Pasini, L ; Sklenard, B ; Mathieu, B ; Licitra, C ; Batude, P ; Mazen, F</creatorcontrib><description>3D sequential integration enables the full use of the third dimension thanks to its unique contact density far above the possibilities of 3D packaging solutions. However, as the transistors are sequentially stacked over each other, the thermal budget allowed for the fabrication of the top transistor is limited by the maximal temperature accepted by the already made bottom one. It was previously described that a thermal budget of T &gt;500 degree C is enough to degrade the bottom transistors performance. So the technological challenge is to develop low temperature routines for the fabrication of the top devices. For that, different processes have to be adapted, mainly the dopant activation step, where the T &gt;1000 degree C spike annealing must be replaced. In this contribution, we present the feasibility to dope by solid phase epitaxial regrowth (SPER) at 450 degree C thin Si films (22nm) containing high dopant concentration of 51020 at/cm3. For n- and p-type dopants, the 450 degree C SPER rendered low sheet resistance values, as low as the ones obtained with the high temperature activation method.</description><identifier>ISSN: 0168-583X</identifier><identifier>DOI: 10.1016/j.nimb.2015.12.021</identifier><language>eng</language><subject>Activation ; Budgeting ; Density ; Devices ; Dopants ; Semiconductor devices ; Three dimensional ; Transistors</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms, 2016-03, Vol.370, p.14-18</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Luce, F P</creatorcontrib><creatorcontrib>Pasini, L</creatorcontrib><creatorcontrib>Sklenard, B</creatorcontrib><creatorcontrib>Mathieu, B</creatorcontrib><creatorcontrib>Licitra, C</creatorcontrib><creatorcontrib>Batude, P</creatorcontrib><creatorcontrib>Mazen, F</creatorcontrib><title>Methodology for thermal budget reduction of SPER down to 450 degree C for 3D sequential integration</title><title>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms</title><description>3D sequential integration enables the full use of the third dimension thanks to its unique contact density far above the possibilities of 3D packaging solutions. However, as the transistors are sequentially stacked over each other, the thermal budget allowed for the fabrication of the top transistor is limited by the maximal temperature accepted by the already made bottom one. It was previously described that a thermal budget of T &gt;500 degree C is enough to degrade the bottom transistors performance. So the technological challenge is to develop low temperature routines for the fabrication of the top devices. For that, different processes have to be adapted, mainly the dopant activation step, where the T &gt;1000 degree C spike annealing must be replaced. In this contribution, we present the feasibility to dope by solid phase epitaxial regrowth (SPER) at 450 degree C thin Si films (22nm) containing high dopant concentration of 51020 at/cm3. For n- and p-type dopants, the 450 degree C SPER rendered low sheet resistance values, as low as the ones obtained with the high temperature activation method.</description><subject>Activation</subject><subject>Budgeting</subject><subject>Density</subject><subject>Devices</subject><subject>Dopants</subject><subject>Semiconductor devices</subject><subject>Three dimensional</subject><subject>Transistors</subject><issn>0168-583X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVi7FuwjAURT0UCQr8QKc3dsHYMW5hplQsSFXbgS0K8Uswcvxa21HVv8cgfoC73OGcw9iTFFwK-TI_cW-7Ay-E1FwWXBTygY0yWM70Uu2H7DHGk8jTSo9YvcN0JEOO2n9oKEA6YugqB4fetJggoOnrZMkDNfD1sfkEQ38eEsFCCzDYBkRYX0v1BhF_e_TJ5t76lGF1SSds0FQu4vT2Y_b8vvleb2c_gbIfU9nZWKNzlUfqYylfV6pYrJTU6g71DIeKTn4</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Luce, F P</creator><creator>Pasini, L</creator><creator>Sklenard, B</creator><creator>Mathieu, B</creator><creator>Licitra, C</creator><creator>Batude, P</creator><creator>Mazen, F</creator><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Methodology for thermal budget reduction of SPER down to 450 degree C for 3D sequential integration</title><author>Luce, F P ; Pasini, L ; Sklenard, B ; Mathieu, B ; Licitra, C ; Batude, P ; Mazen, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17932493153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>Budgeting</topic><topic>Density</topic><topic>Devices</topic><topic>Dopants</topic><topic>Semiconductor devices</topic><topic>Three dimensional</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luce, F P</creatorcontrib><creatorcontrib>Pasini, L</creatorcontrib><creatorcontrib>Sklenard, B</creatorcontrib><creatorcontrib>Mathieu, B</creatorcontrib><creatorcontrib>Licitra, C</creatorcontrib><creatorcontrib>Batude, P</creatorcontrib><creatorcontrib>Mazen, F</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luce, F P</au><au>Pasini, L</au><au>Sklenard, B</au><au>Mathieu, B</au><au>Licitra, C</au><au>Batude, P</au><au>Mazen, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology for thermal budget reduction of SPER down to 450 degree C for 3D sequential integration</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>370</volume><spage>14</spage><epage>18</epage><pages>14-18</pages><issn>0168-583X</issn><abstract>3D sequential integration enables the full use of the third dimension thanks to its unique contact density far above the possibilities of 3D packaging solutions. However, as the transistors are sequentially stacked over each other, the thermal budget allowed for the fabrication of the top transistor is limited by the maximal temperature accepted by the already made bottom one. It was previously described that a thermal budget of T &gt;500 degree C is enough to degrade the bottom transistors performance. So the technological challenge is to develop low temperature routines for the fabrication of the top devices. For that, different processes have to be adapted, mainly the dopant activation step, where the T &gt;1000 degree C spike annealing must be replaced. In this contribution, we present the feasibility to dope by solid phase epitaxial regrowth (SPER) at 450 degree C thin Si films (22nm) containing high dopant concentration of 51020 at/cm3. For n- and p-type dopants, the 450 degree C SPER rendered low sheet resistance values, as low as the ones obtained with the high temperature activation method.</abstract><doi>10.1016/j.nimb.2015.12.021</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-583X
ispartof Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, 2016-03, Vol.370, p.14-18
issn 0168-583X
language eng
recordid cdi_proquest_miscellaneous_1793249315
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Activation
Budgeting
Density
Devices
Dopants
Semiconductor devices
Three dimensional
Transistors
title Methodology for thermal budget reduction of SPER down to 450 degree C for 3D sequential integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20for%20thermal%20budget%20reduction%20of%20SPER%20down%20to%20450%20degree%20C%20for%203D%20sequential%20integration&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20B,%20Beam%20interactions%20with%20materials%20and%20atoms&rft.au=Luce,%20F%20P&rft.date=2016-03-01&rft.volume=370&rft.spage=14&rft.epage=18&rft.pages=14-18&rft.issn=0168-583X&rft_id=info:doi/10.1016/j.nimb.2015.12.021&rft_dat=%3Cproquest%3E1793249315%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793249315&rft_id=info:pmid/&rfr_iscdi=true