Interference-Based Pricing for Opportunistic Multicarrier Cognitive Radio Systems
Cognitive radio systems allow opportunistic secondary users (SUs) to access portions of the spectrum that are unused by the network's licensed primary users (PUs), provided that the induced interference does not compromise the PUs' performance guarantees. To account for interference constr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2015-12, Vol.14 (12), p.6536-6549 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6549 |
---|---|
container_issue | 12 |
container_start_page | 6536 |
container_title | IEEE transactions on wireless communications |
container_volume | 14 |
creator | D'Oro, Salvatore Mertikopoulos, Panayotis Moustakas, Aris L. Palazzo, Sergio |
description | Cognitive radio systems allow opportunistic secondary users (SUs) to access portions of the spectrum that are unused by the network's licensed primary users (PUs), provided that the induced interference does not compromise the PUs' performance guarantees. To account for interference constraints of this type, we consider flexible spectrum access pricing schemes that charge SUs based on the interference that they cause to the system's PUs, and we examine how SUs can react to maximize their achievable transmission rate in this setting. We show that the resulting noncooperative game admits a unique Nash equilibrium under very mild assumptions on the pricing mechanism employed by the network operator and under both static and ergodic (fast-fading) channel conditions. In addition, we derive a dynamic power allocation policy that converges to equilibrium within a few iterations (even for large numbers of users) and that relies only on local-and possibly imperfect-signal-to-interference-and-noise ratio measurements; importantly, the proposed algorithm retains its convergence properties even in the ergodic channel regime, despite its inherent stochasticity. Our theoretical analysis is complemented by extensive numerical simulations that illustrate the performance, robustness, and scalability properties of the proposed pricing scheme under realistic network conditions. |
doi_str_mv | 10.1109/TWC.2015.2456063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793249185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7155573</ieee_id><sourcerecordid>3895529611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-4efee82bb071a6ced4de2e60e7c6f8d8c713cae60464090dc233b09f9fd09a883</originalsourceid><addsrcrecordid>eNpdkMtLw0AQh4MoWKt3wUvAi5fUfWV3c9Tgo1Cpj4rHZbuZlC1pNu4mQv97t7R48DTD8P1mhi9JLjGaYIyK28VXOSEI5xPCco44PUpGOM9lRgiTx7ue8gwTwU-TsxDWCGHB83yUvE3bHnwNHloD2b0OUKWv3hrbrtLa-XTedc73Q2tDb036MjSxaO8t-LR0q9b29gfSd11Zl35sQw-bcJ6c1LoJcHGo4-Tz8WFRPmez-dO0vJtlhhLWZwxqAEmWSySw5gYqVgEBjkAYXstKGoGp0XHAOEMFqgyhdImKuqgrVGgp6Ti52e_tvPseIPRqY4OBptEtuCEoLIp4qMAyj-j1P3TtBt_G7yLFCkQlojxSaE8Z70LwUKvO2432W4WR2jlW0bHaOVYHxzFytY9YAPjDRRSfC0p_AZY1eGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749038036</pqid></control><display><type>article</type><title>Interference-Based Pricing for Opportunistic Multicarrier Cognitive Radio Systems</title><source>IEL</source><creator>D'Oro, Salvatore ; Mertikopoulos, Panayotis ; Moustakas, Aris L. ; Palazzo, Sergio</creator><creatorcontrib>D'Oro, Salvatore ; Mertikopoulos, Panayotis ; Moustakas, Aris L. ; Palazzo, Sergio</creatorcontrib><description>Cognitive radio systems allow opportunistic secondary users (SUs) to access portions of the spectrum that are unused by the network's licensed primary users (PUs), provided that the induced interference does not compromise the PUs' performance guarantees. To account for interference constraints of this type, we consider flexible spectrum access pricing schemes that charge SUs based on the interference that they cause to the system's PUs, and we examine how SUs can react to maximize their achievable transmission rate in this setting. We show that the resulting noncooperative game admits a unique Nash equilibrium under very mild assumptions on the pricing mechanism employed by the network operator and under both static and ergodic (fast-fading) channel conditions. In addition, we derive a dynamic power allocation policy that converges to equilibrium within a few iterations (even for large numbers of users) and that relies only on local-and possibly imperfect-signal-to-interference-and-noise ratio measurements; importantly, the proposed algorithm retains its convergence properties even in the ergodic channel regime, despite its inherent stochasticity. Our theoretical analysis is complemented by extensive numerical simulations that illustrate the performance, robustness, and scalability properties of the proposed pricing scheme under realistic network conditions.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2456063</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Channels ; Cognitive radio ; Economic models ; Ergodic processes ; exponential learning ; Interference ; interference temperature ; multi-carrier systems ; Nash equilibrium ; Networks ; Policies ; Pricing ; Pricing policies ; Resource management ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2015-12, Vol.14 (12), p.6536-6549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-4efee82bb071a6ced4de2e60e7c6f8d8c713cae60464090dc233b09f9fd09a883</citedby><cites>FETCH-LOGICAL-c324t-4efee82bb071a6ced4de2e60e7c6f8d8c713cae60464090dc233b09f9fd09a883</cites><orcidid>0000-0002-7690-0449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7155573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7155573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>D'Oro, Salvatore</creatorcontrib><creatorcontrib>Mertikopoulos, Panayotis</creatorcontrib><creatorcontrib>Moustakas, Aris L.</creatorcontrib><creatorcontrib>Palazzo, Sergio</creatorcontrib><title>Interference-Based Pricing for Opportunistic Multicarrier Cognitive Radio Systems</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Cognitive radio systems allow opportunistic secondary users (SUs) to access portions of the spectrum that are unused by the network's licensed primary users (PUs), provided that the induced interference does not compromise the PUs' performance guarantees. To account for interference constraints of this type, we consider flexible spectrum access pricing schemes that charge SUs based on the interference that they cause to the system's PUs, and we examine how SUs can react to maximize their achievable transmission rate in this setting. We show that the resulting noncooperative game admits a unique Nash equilibrium under very mild assumptions on the pricing mechanism employed by the network operator and under both static and ergodic (fast-fading) channel conditions. In addition, we derive a dynamic power allocation policy that converges to equilibrium within a few iterations (even for large numbers of users) and that relies only on local-and possibly imperfect-signal-to-interference-and-noise ratio measurements; importantly, the proposed algorithm retains its convergence properties even in the ergodic channel regime, despite its inherent stochasticity. Our theoretical analysis is complemented by extensive numerical simulations that illustrate the performance, robustness, and scalability properties of the proposed pricing scheme under realistic network conditions.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Cognitive radio</subject><subject>Economic models</subject><subject>Ergodic processes</subject><subject>exponential learning</subject><subject>Interference</subject><subject>interference temperature</subject><subject>multi-carrier systems</subject><subject>Nash equilibrium</subject><subject>Networks</subject><subject>Policies</subject><subject>Pricing</subject><subject>Pricing policies</subject><subject>Resource management</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQh4MoWKt3wUvAi5fUfWV3c9Tgo1Cpj4rHZbuZlC1pNu4mQv97t7R48DTD8P1mhi9JLjGaYIyK28VXOSEI5xPCco44PUpGOM9lRgiTx7ue8gwTwU-TsxDWCGHB83yUvE3bHnwNHloD2b0OUKWv3hrbrtLa-XTedc73Q2tDb036MjSxaO8t-LR0q9b29gfSd11Zl35sQw-bcJ6c1LoJcHGo4-Tz8WFRPmez-dO0vJtlhhLWZwxqAEmWSySw5gYqVgEBjkAYXstKGoGp0XHAOEMFqgyhdImKuqgrVGgp6Ti52e_tvPseIPRqY4OBptEtuCEoLIp4qMAyj-j1P3TtBt_G7yLFCkQlojxSaE8Z70LwUKvO2432W4WR2jlW0bHaOVYHxzFytY9YAPjDRRSfC0p_AZY1eGw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>D'Oro, Salvatore</creator><creator>Mertikopoulos, Panayotis</creator><creator>Moustakas, Aris L.</creator><creator>Palazzo, Sergio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-7690-0449</orcidid></search><sort><creationdate>201512</creationdate><title>Interference-Based Pricing for Opportunistic Multicarrier Cognitive Radio Systems</title><author>D'Oro, Salvatore ; Mertikopoulos, Panayotis ; Moustakas, Aris L. ; Palazzo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-4efee82bb071a6ced4de2e60e7c6f8d8c713cae60464090dc233b09f9fd09a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Cognitive radio</topic><topic>Economic models</topic><topic>Ergodic processes</topic><topic>exponential learning</topic><topic>Interference</topic><topic>interference temperature</topic><topic>multi-carrier systems</topic><topic>Nash equilibrium</topic><topic>Networks</topic><topic>Policies</topic><topic>Pricing</topic><topic>Pricing policies</topic><topic>Resource management</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Oro, Salvatore</creatorcontrib><creatorcontrib>Mertikopoulos, Panayotis</creatorcontrib><creatorcontrib>Moustakas, Aris L.</creatorcontrib><creatorcontrib>Palazzo, Sergio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>D'Oro, Salvatore</au><au>Mertikopoulos, Panayotis</au><au>Moustakas, Aris L.</au><au>Palazzo, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interference-Based Pricing for Opportunistic Multicarrier Cognitive Radio Systems</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2015-12</date><risdate>2015</risdate><volume>14</volume><issue>12</issue><spage>6536</spage><epage>6549</epage><pages>6536-6549</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Cognitive radio systems allow opportunistic secondary users (SUs) to access portions of the spectrum that are unused by the network's licensed primary users (PUs), provided that the induced interference does not compromise the PUs' performance guarantees. To account for interference constraints of this type, we consider flexible spectrum access pricing schemes that charge SUs based on the interference that they cause to the system's PUs, and we examine how SUs can react to maximize their achievable transmission rate in this setting. We show that the resulting noncooperative game admits a unique Nash equilibrium under very mild assumptions on the pricing mechanism employed by the network operator and under both static and ergodic (fast-fading) channel conditions. In addition, we derive a dynamic power allocation policy that converges to equilibrium within a few iterations (even for large numbers of users) and that relies only on local-and possibly imperfect-signal-to-interference-and-noise ratio measurements; importantly, the proposed algorithm retains its convergence properties even in the ergodic channel regime, despite its inherent stochasticity. Our theoretical analysis is complemented by extensive numerical simulations that illustrate the performance, robustness, and scalability properties of the proposed pricing scheme under realistic network conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2456063</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7690-0449</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2015-12, Vol.14 (12), p.6536-6549 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793249185 |
source | IEL |
subjects | Algorithms Channels Cognitive radio Economic models Ergodic processes exponential learning Interference interference temperature multi-carrier systems Nash equilibrium Networks Policies Pricing Pricing policies Resource management Wireless communication |
title | Interference-Based Pricing for Opportunistic Multicarrier Cognitive Radio Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interference-Based%20Pricing%20for%20Opportunistic%20Multicarrier%20Cognitive%20Radio%20Systems&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=D'Oro,%20Salvatore&rft.date=2015-12&rft.volume=14&rft.issue=12&rft.spage=6536&rft.epage=6549&rft.pages=6536-6549&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2456063&rft_dat=%3Cproquest_RIE%3E3895529611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749038036&rft_id=info:pmid/&rft_ieee_id=7155573&rfr_iscdi=true |