Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints

Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2013-02, Vol.22 (2), p.45-49
1. Verfasser: 王肖肖 韩月林 张美 贾利群
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 2
container_start_page 45
container_title Chinese physics B
container_volume 22
creator 王肖肖 韩月林 张美 贾利群
description Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.
doi_str_mv 10.1088/1674-1056/22/2/020201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793248501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45185703</cqvip_id><sourcerecordid>1793248501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</originalsourceid><addsrcrecordid>eNo9kU1v2zAMhoWiA5Z-_IQB2m0XL_qwHPlYBOs2IEAv7VnQZCpWYUuOpGTwv-lPrZwUBQ8EiOcl-ZIIfaPkJyVSrmmzqStKRLNmbM3WhJWgV2jFiJAVl7y-RqtP5iu6SemVkIYSxlfobecAp3kcIccZa99hlxPeg4eoswseB4tN8AniCTp8OGqfXZ6X6sM0wTBgKLUz6DzWuJu9Hp3RQ-mZMowLmHvAEYZCnQCP4Qz_d7nH2x6yhlOV5wmwD74PQ_ChyM8Tc9TO53SHvlg9JLj_yLfo5fHX8_ZPtXv6_Xf7sKsMpyxXwIC3xdKmFtRYbYFxYYxstG6N5aIRHfyDWoMFIqhgraSm7aSl1BomWU35Lfpx6TvFcDhCymp0yRSH2kM4JkU3LWe1FGRBxQU1MaQUwaopulHHWVGilo-o5dpqubZiTDF1-UjRff_Q9cHvD87vP4Vlayk2hPN3rIuOQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793248501</pqid></control><display><type>article</type><title>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</title><source>Institute of Physics Journals</source><creator>王肖肖 韩月林 张美 贾利群</creator><creatorcontrib>王肖肖 韩月林 张美 贾利群</creatorcontrib><description>Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/2/020201</identifier><language>eng</language><subject>Appell方程 ; Criteria ; Differential equations ; Dynamical systems ; Dynamics ; Hojman守恒量 ; Lie对称性 ; Mathematical analysis ; Symmetry ; 动力学系统 ; 发电 ; 相对运动 ; 非Chetaev型 ; 非完整约束</subject><ispartof>Chinese physics B, 2013-02, Vol.22 (2), p.45-49</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</citedby><cites>FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>王肖肖 韩月林 张美 贾利群</creatorcontrib><title>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.</description><subject>Appell方程</subject><subject>Criteria</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Hojman守恒量</subject><subject>Lie对称性</subject><subject>Mathematical analysis</subject><subject>Symmetry</subject><subject>动力学系统</subject><subject>发电</subject><subject>相对运动</subject><subject>非Chetaev型</subject><subject>非完整约束</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kU1v2zAMhoWiA5Z-_IQB2m0XL_qwHPlYBOs2IEAv7VnQZCpWYUuOpGTwv-lPrZwUBQ8EiOcl-ZIIfaPkJyVSrmmzqStKRLNmbM3WhJWgV2jFiJAVl7y-RqtP5iu6SemVkIYSxlfobecAp3kcIccZa99hlxPeg4eoswseB4tN8AniCTp8OGqfXZ6X6sM0wTBgKLUz6DzWuJu9Hp3RQ-mZMowLmHvAEYZCnQCP4Qz_d7nH2x6yhlOV5wmwD74PQ_ChyM8Tc9TO53SHvlg9JLj_yLfo5fHX8_ZPtXv6_Xf7sKsMpyxXwIC3xdKmFtRYbYFxYYxstG6N5aIRHfyDWoMFIqhgraSm7aSl1BomWU35Lfpx6TvFcDhCymp0yRSH2kM4JkU3LWe1FGRBxQU1MaQUwaopulHHWVGilo-o5dpqubZiTDF1-UjRff_Q9cHvD87vP4Vlayk2hPN3rIuOQA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>王肖肖 韩月林 张美 贾利群</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</title><author>王肖肖 韩月林 张美 贾利群</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Appell方程</topic><topic>Criteria</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Hojman守恒量</topic><topic>Lie对称性</topic><topic>Mathematical analysis</topic><topic>Symmetry</topic><topic>动力学系统</topic><topic>发电</topic><topic>相对运动</topic><topic>非Chetaev型</topic><topic>非完整约束</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王肖肖 韩月林 张美 贾利群</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王肖肖 韩月林 张美 贾利群</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>45</spage><epage>49</epage><pages>45-49</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.</abstract><doi>10.1088/1674-1056/22/2/020201</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2013-02, Vol.22 (2), p.45-49
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1793248501
source Institute of Physics Journals
subjects Appell方程
Criteria
Differential equations
Dynamical systems
Dynamics
Hojman守恒量
Lie对称性
Mathematical analysis
Symmetry
动力学系统
发电
相对运动
非Chetaev型
非完整约束
title Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20symmetry%20and%20its%20generation%20of%20conserved%20quantity%20of%20Appell%20equation%20in%20a%20dynamical%20system%20of%20the%20relative%20motion%20with%20Chetaev-type%20nonholonomic%20constraints&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E8%82%96%E8%82%96%20%E9%9F%A9%E6%9C%88%E6%9E%97%20%E5%BC%A0%E7%BE%8E%20%E8%B4%BE%E5%88%A9%E7%BE%A4&rft.date=2013-02-01&rft.volume=22&rft.issue=2&rft.spage=45&rft.epage=49&rft.pages=45-49&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/2/020201&rft_dat=%3Cproquest_cross%3E1793248501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793248501&rft_id=info:pmid/&rft_cqvip_id=45185703&rfr_iscdi=true