Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,th...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2013-02, Vol.22 (2), p.45-49 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 2 |
container_start_page | 45 |
container_title | Chinese physics B |
container_volume | 22 |
creator | 王肖肖 韩月林 张美 贾利群 |
description | Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results. |
doi_str_mv | 10.1088/1674-1056/22/2/020201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793248501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45185703</cqvip_id><sourcerecordid>1793248501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</originalsourceid><addsrcrecordid>eNo9kU1v2zAMhoWiA5Z-_IQB2m0XL_qwHPlYBOs2IEAv7VnQZCpWYUuOpGTwv-lPrZwUBQ8EiOcl-ZIIfaPkJyVSrmmzqStKRLNmbM3WhJWgV2jFiJAVl7y-RqtP5iu6SemVkIYSxlfobecAp3kcIccZa99hlxPeg4eoswseB4tN8AniCTp8OGqfXZ6X6sM0wTBgKLUz6DzWuJu9Hp3RQ-mZMowLmHvAEYZCnQCP4Qz_d7nH2x6yhlOV5wmwD74PQ_ChyM8Tc9TO53SHvlg9JLj_yLfo5fHX8_ZPtXv6_Xf7sKsMpyxXwIC3xdKmFtRYbYFxYYxstG6N5aIRHfyDWoMFIqhgraSm7aSl1BomWU35Lfpx6TvFcDhCymp0yRSH2kM4JkU3LWe1FGRBxQU1MaQUwaopulHHWVGilo-o5dpqubZiTDF1-UjRff_Q9cHvD87vP4Vlayk2hPN3rIuOQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793248501</pqid></control><display><type>article</type><title>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</title><source>Institute of Physics Journals</source><creator>王肖肖 韩月林 张美 贾利群</creator><creatorcontrib>王肖肖 韩月林 张美 贾利群</creatorcontrib><description>Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/2/020201</identifier><language>eng</language><subject>Appell方程 ; Criteria ; Differential equations ; Dynamical systems ; Dynamics ; Hojman守恒量 ; Lie对称性 ; Mathematical analysis ; Symmetry ; 动力学系统 ; 发电 ; 相对运动 ; 非Chetaev型 ; 非完整约束</subject><ispartof>Chinese physics B, 2013-02, Vol.22 (2), p.45-49</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</citedby><cites>FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>王肖肖 韩月林 张美 贾利群</creatorcontrib><title>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.</description><subject>Appell方程</subject><subject>Criteria</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Hojman守恒量</subject><subject>Lie对称性</subject><subject>Mathematical analysis</subject><subject>Symmetry</subject><subject>动力学系统</subject><subject>发电</subject><subject>相对运动</subject><subject>非Chetaev型</subject><subject>非完整约束</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kU1v2zAMhoWiA5Z-_IQB2m0XL_qwHPlYBOs2IEAv7VnQZCpWYUuOpGTwv-lPrZwUBQ8EiOcl-ZIIfaPkJyVSrmmzqStKRLNmbM3WhJWgV2jFiJAVl7y-RqtP5iu6SemVkIYSxlfobecAp3kcIccZa99hlxPeg4eoswseB4tN8AniCTp8OGqfXZ6X6sM0wTBgKLUz6DzWuJu9Hp3RQ-mZMowLmHvAEYZCnQCP4Qz_d7nH2x6yhlOV5wmwD74PQ_ChyM8Tc9TO53SHvlg9JLj_yLfo5fHX8_ZPtXv6_Xf7sKsMpyxXwIC3xdKmFtRYbYFxYYxstG6N5aIRHfyDWoMFIqhgraSm7aSl1BomWU35Lfpx6TvFcDhCymp0yRSH2kM4JkU3LWe1FGRBxQU1MaQUwaopulHHWVGilo-o5dpqubZiTDF1-UjRff_Q9cHvD87vP4Vlayk2hPN3rIuOQA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>王肖肖 韩月林 张美 贾利群</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</title><author>王肖肖 韩月林 张美 贾利群</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e2e391027451cfafe235cc86aa9cf3565debe4aefe05152981c9d8f11fc282413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Appell方程</topic><topic>Criteria</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Hojman守恒量</topic><topic>Lie对称性</topic><topic>Mathematical analysis</topic><topic>Symmetry</topic><topic>动力学系统</topic><topic>发电</topic><topic>相对运动</topic><topic>非Chetaev型</topic><topic>非完整约束</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王肖肖 韩月林 张美 贾利群</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王肖肖 韩月林 张美 贾利群</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>45</spage><epage>49</epage><pages>45-49</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.</abstract><doi>10.1088/1674-1056/22/2/020201</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2013-02, Vol.22 (2), p.45-49 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793248501 |
source | Institute of Physics Journals |
subjects | Appell方程 Criteria Differential equations Dynamical systems Dynamics Hojman守恒量 Lie对称性 Mathematical analysis Symmetry 动力学系统 发电 相对运动 非Chetaev型 非完整约束 |
title | Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20symmetry%20and%20its%20generation%20of%20conserved%20quantity%20of%20Appell%20equation%20in%20a%20dynamical%20system%20of%20the%20relative%20motion%20with%20Chetaev-type%20nonholonomic%20constraints&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E8%82%96%E8%82%96%20%E9%9F%A9%E6%9C%88%E6%9E%97%20%E5%BC%A0%E7%BE%8E%20%E8%B4%BE%E5%88%A9%E7%BE%A4&rft.date=2013-02-01&rft.volume=22&rft.issue=2&rft.spage=45&rft.epage=49&rft.pages=45-49&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/2/020201&rft_dat=%3Cproquest_cross%3E1793248501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793248501&rft_id=info:pmid/&rft_cqvip_id=45185703&rfr_iscdi=true |