Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2016-02, Vol.123, p.143-150
Hauptverfasser: Mulle, M., Wafai, H., Yudhanto, A., Lubineau, G., Yaldiz, R., Schijve, W., Verghese, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 143
container_title Composites science and technology
container_volume 123
creator Mulle, M.
Wafai, H.
Yudhanto, A.
Lubineau, G.
Yaldiz, R.
Schijve, W.
Verghese, N.
description Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.
doi_str_mv 10.1016/j.compscitech.2015.12.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793246944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381530172X</els_id><sourcerecordid>1793246944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-eed5794edd010a09ae149ffffb7cd4d1cdb8cf05731d78652611940eba76c6193</originalsourceid><addsrcrecordid>eNqNkDtPxDAQhC0EEsfjP4SOJmHXeZ1LOPGSToICCirLsTfBpyQOdg7p_j0-HQUl26w0mhntfoxdIWQIWN1sMu2GKWg7k_7MOGCZIc-AwxFb4LIWKUIJx2wBvKrSvMyXp-wshA0A1KXgC_bx6p2mEJLBjXZ23o5d4tqk61XUPNmxdV6TSSbX7ybvpl1PIyW9GuyoZgrJNuwTrW3IJ3dedV3SeTVHLVywk1b1gS5_9zl7f7h_Wz2l65fH59XtOtUFhzklMmUtCjIGEBQIRViINk5Ta1MY1KZZ6hbKOkdTL6uSV4iiAGpUXekKRX7Org-98byvLYVZDjZo6ns1ktsGibXIeVGJoohWcbBq70Lw1MrJ20H5nUSQe5xyI__glHucErmMOGN2dchS_OXbkpfRRWNkYz3pWRpn_9HyA3T8htI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793246944</pqid></control><display><type>article</type><title>Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings</title><source>Elsevier ScienceDirect Journals</source><creator>Mulle, M. ; Wafai, H. ; Yudhanto, A. ; Lubineau, G. ; Yaldiz, R. ; Schijve, W. ; Verghese, N.</creator><creatorcontrib>Mulle, M. ; Wafai, H. ; Yudhanto, A. ; Lubineau, G. ; Yaldiz, R. ; Schijve, W. ; Verghese, N.</creatorcontrib><description>Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2015.12.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Multifonctionnal composites ; B. Process monitoring ; Bragg gratings ; C. Residual stress/strain, thermomechanical properties ; D. Fiber optic sensing ; E. Hot-press molding ; Fibers ; Glass fiber reinforced plastics ; Laminates ; Molding (process) ; Polypropylenes ; Strain ; Thermal expansion</subject><ispartof>Composites science and technology, 2016-02, Vol.123, p.143-150</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-eed5794edd010a09ae149ffffb7cd4d1cdb8cf05731d78652611940eba76c6193</citedby><cites>FETCH-LOGICAL-c420t-eed5794edd010a09ae149ffffb7cd4d1cdb8cf05731d78652611940eba76c6193</cites><orcidid>0000-0002-7370-6093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026635381530172X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Mulle, M.</creatorcontrib><creatorcontrib>Wafai, H.</creatorcontrib><creatorcontrib>Yudhanto, A.</creatorcontrib><creatorcontrib>Lubineau, G.</creatorcontrib><creatorcontrib>Yaldiz, R.</creatorcontrib><creatorcontrib>Schijve, W.</creatorcontrib><creatorcontrib>Verghese, N.</creatorcontrib><title>Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings</title><title>Composites science and technology</title><description>Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.</description><subject>A. Multifonctionnal composites</subject><subject>B. Process monitoring</subject><subject>Bragg gratings</subject><subject>C. Residual stress/strain, thermomechanical properties</subject><subject>D. Fiber optic sensing</subject><subject>E. Hot-press molding</subject><subject>Fibers</subject><subject>Glass fiber reinforced plastics</subject><subject>Laminates</subject><subject>Molding (process)</subject><subject>Polypropylenes</subject><subject>Strain</subject><subject>Thermal expansion</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPxDAQhC0EEsfjP4SOJmHXeZ1LOPGSToICCirLsTfBpyQOdg7p_j0-HQUl26w0mhntfoxdIWQIWN1sMu2GKWg7k_7MOGCZIc-AwxFb4LIWKUIJx2wBvKrSvMyXp-wshA0A1KXgC_bx6p2mEJLBjXZ23o5d4tqk61XUPNmxdV6TSSbX7ybvpl1PIyW9GuyoZgrJNuwTrW3IJ3dedV3SeTVHLVywk1b1gS5_9zl7f7h_Wz2l65fH59XtOtUFhzklMmUtCjIGEBQIRViINk5Ta1MY1KZZ6hbKOkdTL6uSV4iiAGpUXekKRX7Org-98byvLYVZDjZo6ns1ktsGibXIeVGJoohWcbBq70Lw1MrJ20H5nUSQe5xyI__glHucErmMOGN2dchS_OXbkpfRRWNkYz3pWRpn_9HyA3T8htI</recordid><startdate>20160208</startdate><enddate>20160208</enddate><creator>Mulle, M.</creator><creator>Wafai, H.</creator><creator>Yudhanto, A.</creator><creator>Lubineau, G.</creator><creator>Yaldiz, R.</creator><creator>Schijve, W.</creator><creator>Verghese, N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7370-6093</orcidid></search><sort><creationdate>20160208</creationdate><title>Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings</title><author>Mulle, M. ; Wafai, H. ; Yudhanto, A. ; Lubineau, G. ; Yaldiz, R. ; Schijve, W. ; Verghese, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-eed5794edd010a09ae149ffffb7cd4d1cdb8cf05731d78652611940eba76c6193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A. Multifonctionnal composites</topic><topic>B. Process monitoring</topic><topic>Bragg gratings</topic><topic>C. Residual stress/strain, thermomechanical properties</topic><topic>D. Fiber optic sensing</topic><topic>E. Hot-press molding</topic><topic>Fibers</topic><topic>Glass fiber reinforced plastics</topic><topic>Laminates</topic><topic>Molding (process)</topic><topic>Polypropylenes</topic><topic>Strain</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulle, M.</creatorcontrib><creatorcontrib>Wafai, H.</creatorcontrib><creatorcontrib>Yudhanto, A.</creatorcontrib><creatorcontrib>Lubineau, G.</creatorcontrib><creatorcontrib>Yaldiz, R.</creatorcontrib><creatorcontrib>Schijve, W.</creatorcontrib><creatorcontrib>Verghese, N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulle, M.</au><au>Wafai, H.</au><au>Yudhanto, A.</au><au>Lubineau, G.</au><au>Yaldiz, R.</au><au>Schijve, W.</au><au>Verghese, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings</atitle><jtitle>Composites science and technology</jtitle><date>2016-02-08</date><risdate>2016</risdate><volume>123</volume><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2015.12.020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7370-6093</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2016-02, Vol.123, p.143-150
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_1793246944
source Elsevier ScienceDirect Journals
subjects A. Multifonctionnal composites
B. Process monitoring
Bragg gratings
C. Residual stress/strain, thermomechanical properties
D. Fiber optic sensing
E. Hot-press molding
Fibers
Glass fiber reinforced plastics
Laminates
Molding (process)
Polypropylenes
Strain
Thermal expansion
title Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20monitoring%20of%20glass%20reinforced%20polypropylene%20laminates%20using%20fiber%20Bragg%20gratings&rft.jtitle=Composites%20science%20and%20technology&rft.au=Mulle,%20M.&rft.date=2016-02-08&rft.volume=123&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2015.12.020&rft_dat=%3Cproquest_cross%3E1793246944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793246944&rft_id=info:pmid/&rft_els_id=S026635381530172X&rfr_iscdi=true