3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites

The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2016-02, Vol.123, p.1-9
Hauptverfasser: Zhang, Jie, Ouyang, Qiubao, Guo, Qiang, Li, Zhiqiang, Fan, Genlian, Su, Yishi, Jiang, Lin, Lavernia, Enrique J., Schoenung, Julie M., Zhang, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Composites science and technology
container_volume 123
creator Zhang, Jie
Ouyang, Qiubao
Guo, Qiang
Li, Zhiqiang
Fan, Genlian
Su, Yishi
Jiang, Lin
Lavernia, Enrique J.
Schoenung, Julie M.
Zhang, Di
description The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.
doi_str_mv 10.1016/j.compscitech.2015.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793244764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353815301342</els_id><sourcerecordid>1793244764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</originalsourceid><addsrcrecordid>eNqNkDtPxDAQhC0EEsfBfwgdTXLe2Hm4PIWndIgCqC3H3oBPSXzYOST-PQ5HQUmx2mJnPu0MIZdAM6BQrraZdsMuaDuhfs9yCkUGkFHgR2QBdSVSoAU9Jgual2XKClafkrMQtpTSqhD5gih2nTxa7V2Y_F5Pe49pqwKapLNjZCbY44DjlAzOYG_Ht8R1icHO-UFN1o2JGqPUqx_nfHu2zW617pP5KxciIZyTk071AS9-95K83t68NPfp5unuoVlvUs1pMaWqNmBqZgxTXMTRRcVzxgRv4-dtR7nWLbQlN4wL0emC81pD1RoBpTFUabYkVwfuzruPPYZJDjZo7Hs1otsHCZVgOedVyaNUHKRz7uCxkztvB-W_JFA51yq38k-tcq5VAshYa_Q2By_GLJ8WvYwqHDUa61FP0jj7D8o3ThmIOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793244764</pqid></control><display><type>article</type><title>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Jie ; Ouyang, Qiubao ; Guo, Qiang ; Li, Zhiqiang ; Fan, Genlian ; Su, Yishi ; Jiang, Lin ; Lavernia, Enrique J. ; Schoenung, Julie M. ; Zhang, Di</creator><creatorcontrib>Zhang, Jie ; Ouyang, Qiubao ; Guo, Qiang ; Li, Zhiqiang ; Fan, Genlian ; Su, Yishi ; Jiang, Lin ; Lavernia, Enrique J. ; Schoenung, Julie M. ; Zhang, Di</creatorcontrib><description>The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2015.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum ; Computer simulation ; Damage mechanics ; Finite element analysis (FEA) ; Finite element method ; Fracture mechanics ; Interfacial strength ; Mathematical analysis ; Mathematical models ; Metal-matrix composites (MMCs) ; Particulate composites ; Silicon carbide</subject><ispartof>Composites science and technology, 2016-02, Vol.123, p.1-9</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</citedby><cites>FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353815301342$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ouyang, Qiubao</creatorcontrib><creatorcontrib>Guo, Qiang</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Fan, Genlian</creatorcontrib><creatorcontrib>Su, Yishi</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Lavernia, Enrique J.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><title>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</title><title>Composites science and technology</title><description>The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.</description><subject>Aluminum</subject><subject>Computer simulation</subject><subject>Damage mechanics</subject><subject>Finite element analysis (FEA)</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Interfacial strength</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metal-matrix composites (MMCs)</subject><subject>Particulate composites</subject><subject>Silicon carbide</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPxDAQhC0EEsfBfwgdTXLe2Hm4PIWndIgCqC3H3oBPSXzYOST-PQ5HQUmx2mJnPu0MIZdAM6BQrraZdsMuaDuhfs9yCkUGkFHgR2QBdSVSoAU9Jgual2XKClafkrMQtpTSqhD5gih2nTxa7V2Y_F5Pe49pqwKapLNjZCbY44DjlAzOYG_Ht8R1icHO-UFN1o2JGqPUqx_nfHu2zW617pP5KxciIZyTk071AS9-95K83t68NPfp5unuoVlvUs1pMaWqNmBqZgxTXMTRRcVzxgRv4-dtR7nWLbQlN4wL0emC81pD1RoBpTFUabYkVwfuzruPPYZJDjZo7Hs1otsHCZVgOedVyaNUHKRz7uCxkztvB-W_JFA51yq38k-tcq5VAshYa_Q2By_GLJ8WvYwqHDUa61FP0jj7D8o3ThmIOA</recordid><startdate>20160208</startdate><enddate>20160208</enddate><creator>Zhang, Jie</creator><creator>Ouyang, Qiubao</creator><creator>Guo, Qiang</creator><creator>Li, Zhiqiang</creator><creator>Fan, Genlian</creator><creator>Su, Yishi</creator><creator>Jiang, Lin</creator><creator>Lavernia, Enrique J.</creator><creator>Schoenung, Julie M.</creator><creator>Zhang, Di</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160208</creationdate><title>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</title><author>Zhang, Jie ; Ouyang, Qiubao ; Guo, Qiang ; Li, Zhiqiang ; Fan, Genlian ; Su, Yishi ; Jiang, Lin ; Lavernia, Enrique J. ; Schoenung, Julie M. ; Zhang, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Computer simulation</topic><topic>Damage mechanics</topic><topic>Finite element analysis (FEA)</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Interfacial strength</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metal-matrix composites (MMCs)</topic><topic>Particulate composites</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ouyang, Qiubao</creatorcontrib><creatorcontrib>Guo, Qiang</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Fan, Genlian</creatorcontrib><creatorcontrib>Su, Yishi</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Lavernia, Enrique J.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Ouyang, Qiubao</au><au>Guo, Qiang</au><au>Li, Zhiqiang</au><au>Fan, Genlian</au><au>Su, Yishi</au><au>Jiang, Lin</au><au>Lavernia, Enrique J.</au><au>Schoenung, Julie M.</au><au>Zhang, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</atitle><jtitle>Composites science and technology</jtitle><date>2016-02-08</date><risdate>2016</risdate><volume>123</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2015.11.014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2016-02, Vol.123, p.1-9
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_1793244764
source Elsevier ScienceDirect Journals
subjects Aluminum
Computer simulation
Damage mechanics
Finite element analysis (FEA)
Finite element method
Fracture mechanics
Interfacial strength
Mathematical analysis
Mathematical models
Metal-matrix composites (MMCs)
Particulate composites
Silicon carbide
title 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Microstructure-based%20finite%20element%20modeling%20of%20deformation%20and%20fracture%20of%20SiCp/Al%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Zhang,%20Jie&rft.date=2016-02-08&rft.volume=123&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2015.11.014&rft_dat=%3Cproquest_cross%3E1793244764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793244764&rft_id=info:pmid/&rft_els_id=S0266353815301342&rfr_iscdi=true