3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites
The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2016-02, Vol.123, p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Composites science and technology |
container_volume | 123 |
creator | Zhang, Jie Ouyang, Qiubao Guo, Qiang Li, Zhiqiang Fan, Genlian Su, Yishi Jiang, Lin Lavernia, Enrique J. Schoenung, Julie M. Zhang, Di |
description | The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail. |
doi_str_mv | 10.1016/j.compscitech.2015.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793244764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353815301342</els_id><sourcerecordid>1793244764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</originalsourceid><addsrcrecordid>eNqNkDtPxDAQhC0EEsfBfwgdTXLe2Hm4PIWndIgCqC3H3oBPSXzYOST-PQ5HQUmx2mJnPu0MIZdAM6BQrraZdsMuaDuhfs9yCkUGkFHgR2QBdSVSoAU9Jgual2XKClafkrMQtpTSqhD5gih2nTxa7V2Y_F5Pe49pqwKapLNjZCbY44DjlAzOYG_Ht8R1icHO-UFN1o2JGqPUqx_nfHu2zW617pP5KxciIZyTk071AS9-95K83t68NPfp5unuoVlvUs1pMaWqNmBqZgxTXMTRRcVzxgRv4-dtR7nWLbQlN4wL0emC81pD1RoBpTFUabYkVwfuzruPPYZJDjZo7Hs1otsHCZVgOedVyaNUHKRz7uCxkztvB-W_JFA51yq38k-tcq5VAshYa_Q2By_GLJ8WvYwqHDUa61FP0jj7D8o3ThmIOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793244764</pqid></control><display><type>article</type><title>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Jie ; Ouyang, Qiubao ; Guo, Qiang ; Li, Zhiqiang ; Fan, Genlian ; Su, Yishi ; Jiang, Lin ; Lavernia, Enrique J. ; Schoenung, Julie M. ; Zhang, Di</creator><creatorcontrib>Zhang, Jie ; Ouyang, Qiubao ; Guo, Qiang ; Li, Zhiqiang ; Fan, Genlian ; Su, Yishi ; Jiang, Lin ; Lavernia, Enrique J. ; Schoenung, Julie M. ; Zhang, Di</creatorcontrib><description>The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2015.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum ; Computer simulation ; Damage mechanics ; Finite element analysis (FEA) ; Finite element method ; Fracture mechanics ; Interfacial strength ; Mathematical analysis ; Mathematical models ; Metal-matrix composites (MMCs) ; Particulate composites ; Silicon carbide</subject><ispartof>Composites science and technology, 2016-02, Vol.123, p.1-9</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</citedby><cites>FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353815301342$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ouyang, Qiubao</creatorcontrib><creatorcontrib>Guo, Qiang</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Fan, Genlian</creatorcontrib><creatorcontrib>Su, Yishi</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Lavernia, Enrique J.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><title>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</title><title>Composites science and technology</title><description>The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.</description><subject>Aluminum</subject><subject>Computer simulation</subject><subject>Damage mechanics</subject><subject>Finite element analysis (FEA)</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Interfacial strength</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metal-matrix composites (MMCs)</subject><subject>Particulate composites</subject><subject>Silicon carbide</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPxDAQhC0EEsfBfwgdTXLe2Hm4PIWndIgCqC3H3oBPSXzYOST-PQ5HQUmx2mJnPu0MIZdAM6BQrraZdsMuaDuhfs9yCkUGkFHgR2QBdSVSoAU9Jgual2XKClafkrMQtpTSqhD5gih2nTxa7V2Y_F5Pe49pqwKapLNjZCbY44DjlAzOYG_Ht8R1icHO-UFN1o2JGqPUqx_nfHu2zW617pP5KxciIZyTk071AS9-95K83t68NPfp5unuoVlvUs1pMaWqNmBqZgxTXMTRRcVzxgRv4-dtR7nWLbQlN4wL0emC81pD1RoBpTFUabYkVwfuzruPPYZJDjZo7Hs1otsHCZVgOedVyaNUHKRz7uCxkztvB-W_JFA51yq38k-tcq5VAshYa_Q2By_GLJ8WvYwqHDUa61FP0jj7D8o3ThmIOA</recordid><startdate>20160208</startdate><enddate>20160208</enddate><creator>Zhang, Jie</creator><creator>Ouyang, Qiubao</creator><creator>Guo, Qiang</creator><creator>Li, Zhiqiang</creator><creator>Fan, Genlian</creator><creator>Su, Yishi</creator><creator>Jiang, Lin</creator><creator>Lavernia, Enrique J.</creator><creator>Schoenung, Julie M.</creator><creator>Zhang, Di</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160208</creationdate><title>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</title><author>Zhang, Jie ; Ouyang, Qiubao ; Guo, Qiang ; Li, Zhiqiang ; Fan, Genlian ; Su, Yishi ; Jiang, Lin ; Lavernia, Enrique J. ; Schoenung, Julie M. ; Zhang, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a8d1d83dd3a493a4c57423394b266bf04ccb1b64d3499fc5448c17bd916dd0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Computer simulation</topic><topic>Damage mechanics</topic><topic>Finite element analysis (FEA)</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Interfacial strength</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metal-matrix composites (MMCs)</topic><topic>Particulate composites</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ouyang, Qiubao</creatorcontrib><creatorcontrib>Guo, Qiang</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Fan, Genlian</creatorcontrib><creatorcontrib>Su, Yishi</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Lavernia, Enrique J.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Ouyang, Qiubao</au><au>Guo, Qiang</au><au>Li, Zhiqiang</au><au>Fan, Genlian</au><au>Su, Yishi</au><au>Jiang, Lin</au><au>Lavernia, Enrique J.</au><au>Schoenung, Julie M.</au><au>Zhang, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites</atitle><jtitle>Composites science and technology</jtitle><date>2016-02-08</date><risdate>2016</risdate><volume>123</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The mechanical behavior, with particular emphasis on the damage mechanisms, of SiCp/Al composites was studied by both experiments and finite element analysis in this paper. A 3D microstructure-based finite element model was developed to predict the elasto-plastic response and fracture behavior of a 7vol.% SiCp/Al composite. The 3D microstructure of SiCp/Al composite was reconstructed by implementing a Camisizer XT particle size analysis device and a random sequential adsorption algorithm. The constitutive behavior of the elastoplastic-damage in the metal matrix, the elastic-brittle failure for the particle reinforcement, and the traction-separation for interfaces, were independently simulated in this model. The validity of the modeling results were validated by the agreement of the experimental stress-strain curve and the morphology of fracture section with those predicted by the simulation. The visual elasto-plastic deformation process, along with crack generation and propagation was well simulated in this model. The numerical results were used to provide insight into the damage mechanisms of SiCp/Al composites, and the effects of interfacial strength and particle strength on material properties were also discussed in detail.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2015.11.014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2016-02, Vol.123, p.1-9 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793244764 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum Computer simulation Damage mechanics Finite element analysis (FEA) Finite element method Fracture mechanics Interfacial strength Mathematical analysis Mathematical models Metal-matrix composites (MMCs) Particulate composites Silicon carbide |
title | 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Microstructure-based%20finite%20element%20modeling%20of%20deformation%20and%20fracture%20of%20SiCp/Al%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Zhang,%20Jie&rft.date=2016-02-08&rft.volume=123&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2015.11.014&rft_dat=%3Cproquest_cross%3E1793244764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793244764&rft_id=info:pmid/&rft_els_id=S0266353815301342&rfr_iscdi=true |