Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding
The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohes...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2015-11, Vol.95 (11), p.1190-1201 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1201 |
---|---|
container_issue | 11 |
container_start_page | 1190 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 95 |
creator | Ivanova, J. Nikolova, G. Becker, W. Gambin, B. |
description | The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures.
The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. |
doi_str_mv | 10.1002/zamm.201300119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793243019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3850194771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</originalsourceid><addsrcrecordid>eNqFkMtLJDEQh4MoOKtePQe8eOmx8uhO5yiDL9BdBB8gSEh3V2u0uzMmM-r412-GkWHZi6c86vuKqh8h-wzGDIAffdm-H3NgAoAxvUFGLOcsk-m1SUYAUmacF2qb_IrxBdKvZmJEHi-GGYbW1kgrfLbvzgfqW2pp5bLeppKzHZ126UbnQ4OBNovB9q6mnbeNG57GdOKfMbp3pG7dqcHKD8vqLtlqbRdx7_vcIbenJzeT8-zyz9nF5Pgyq0VZ6ozntgYQupGiqotaVdBwnZdatlWRl9AwxWWZW1SQp52sZrItUXDEtlAMm0rskMNV32nwb3OMM9O7WGPX2QH9PBqmtOBSpJ0TevAf-uLnYUjTJYqXAEUhZaLGK6oOPsaArZkG19uwMAzMMm2zTNus006CXgkfrsPFD7R5OL66-tfNVq6LM_xcuza8mkIJlZv732eG3Z1fPzB-b5T4CyYCkek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728006644</pqid></control><display><type>article</type><title>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</title><source>Wiley Online Library All Journals</source><creator>Ivanova, J. ; Nikolova, G. ; Becker, W. ; Gambin, B.</creator><creatorcontrib>Ivanova, J. ; Nikolova, G. ; Becker, W. ; Gambin, B.</creatorcontrib><description>The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures.
The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300119</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Behavior ; Ceramics ; Cohesion ; cracked plate ; debond length ; Debonding ; Dynamic behaviour of bi-material structure ; Dynamic response ; Dynamics ; elastic-brittle and cohesive interface delamination ; Inertia ; Loads (forces) ; Mathematical models ; Shear ; shear lag model</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2015-11, Vol.95 (11), p.1190-1201</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</citedby><cites>FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201300119$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201300119$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ivanova, J.</creatorcontrib><creatorcontrib>Nikolova, G.</creatorcontrib><creatorcontrib>Becker, W.</creatorcontrib><creatorcontrib>Gambin, B.</creatorcontrib><title>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures.
The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.</description><subject>Behavior</subject><subject>Ceramics</subject><subject>Cohesion</subject><subject>cracked plate</subject><subject>debond length</subject><subject>Debonding</subject><subject>Dynamic behaviour of bi-material structure</subject><subject>Dynamic response</subject><subject>Dynamics</subject><subject>elastic-brittle and cohesive interface delamination</subject><subject>Inertia</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Shear</subject><subject>shear lag model</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLJDEQh4MoOKtePQe8eOmx8uhO5yiDL9BdBB8gSEh3V2u0uzMmM-r412-GkWHZi6c86vuKqh8h-wzGDIAffdm-H3NgAoAxvUFGLOcsk-m1SUYAUmacF2qb_IrxBdKvZmJEHi-GGYbW1kgrfLbvzgfqW2pp5bLeppKzHZ126UbnQ4OBNovB9q6mnbeNG57GdOKfMbp3pG7dqcHKD8vqLtlqbRdx7_vcIbenJzeT8-zyz9nF5Pgyq0VZ6ozntgYQupGiqotaVdBwnZdatlWRl9AwxWWZW1SQp52sZrItUXDEtlAMm0rskMNV32nwb3OMM9O7WGPX2QH9PBqmtOBSpJ0TevAf-uLnYUjTJYqXAEUhZaLGK6oOPsaArZkG19uwMAzMMm2zTNus006CXgkfrsPFD7R5OL66-tfNVq6LM_xcuza8mkIJlZv732eG3Z1fPzB-b5T4CyYCkek</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Ivanova, J.</creator><creator>Nikolova, G.</creator><creator>Becker, W.</creator><creator>Gambin, B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201511</creationdate><title>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</title><author>Ivanova, J. ; Nikolova, G. ; Becker, W. ; Gambin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavior</topic><topic>Ceramics</topic><topic>Cohesion</topic><topic>cracked plate</topic><topic>debond length</topic><topic>Debonding</topic><topic>Dynamic behaviour of bi-material structure</topic><topic>Dynamic response</topic><topic>Dynamics</topic><topic>elastic-brittle and cohesive interface delamination</topic><topic>Inertia</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Shear</topic><topic>shear lag model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, J.</creatorcontrib><creatorcontrib>Nikolova, G.</creatorcontrib><creatorcontrib>Becker, W.</creatorcontrib><creatorcontrib>Gambin, B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, J.</au><au>Nikolova, G.</au><au>Becker, W.</au><au>Gambin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2015-11</date><risdate>2015</risdate><volume>95</volume><issue>11</issue><spage>1190</spage><epage>1201</epage><pages>1190-1201</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures.
The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201300119</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2015-11, Vol.95 (11), p.1190-1201 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793243019 |
source | Wiley Online Library All Journals |
subjects | Behavior Ceramics Cohesion cracked plate debond length Debonding Dynamic behaviour of bi-material structure Dynamic response Dynamics elastic-brittle and cohesive interface delamination Inertia Loads (forces) Mathematical models Shear shear lag model |
title | Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20behavior%20of%20a%20bi-material%20plate%20under%20dynamic%20loading.%20Cohesive%20interface%20debonding&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Ivanova,%20J.&rft.date=2015-11&rft.volume=95&rft.issue=11&rft.spage=1190&rft.epage=1201&rft.pages=1190-1201&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300119&rft_dat=%3Cproquest_cross%3E3850194771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728006644&rft_id=info:pmid/&rfr_iscdi=true |