Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding

The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2015-11, Vol.95 (11), p.1190-1201
Hauptverfasser: Ivanova, J., Nikolova, G., Becker, W., Gambin, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 11
container_start_page 1190
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 95
creator Ivanova, J.
Nikolova, G.
Becker, W.
Gambin, B.
description The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.
doi_str_mv 10.1002/zamm.201300119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793243019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3850194771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</originalsourceid><addsrcrecordid>eNqFkMtLJDEQh4MoOKtePQe8eOmx8uhO5yiDL9BdBB8gSEh3V2u0uzMmM-r412-GkWHZi6c86vuKqh8h-wzGDIAffdm-H3NgAoAxvUFGLOcsk-m1SUYAUmacF2qb_IrxBdKvZmJEHi-GGYbW1kgrfLbvzgfqW2pp5bLeppKzHZ126UbnQ4OBNovB9q6mnbeNG57GdOKfMbp3pG7dqcHKD8vqLtlqbRdx7_vcIbenJzeT8-zyz9nF5Pgyq0VZ6ozntgYQupGiqotaVdBwnZdatlWRl9AwxWWZW1SQp52sZrItUXDEtlAMm0rskMNV32nwb3OMM9O7WGPX2QH9PBqmtOBSpJ0TevAf-uLnYUjTJYqXAEUhZaLGK6oOPsaArZkG19uwMAzMMm2zTNus006CXgkfrsPFD7R5OL66-tfNVq6LM_xcuza8mkIJlZv732eG3Z1fPzB-b5T4CyYCkek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728006644</pqid></control><display><type>article</type><title>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</title><source>Wiley Online Library All Journals</source><creator>Ivanova, J. ; Nikolova, G. ; Becker, W. ; Gambin, B.</creator><creatorcontrib>Ivanova, J. ; Nikolova, G. ; Becker, W. ; Gambin, B.</creatorcontrib><description>The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300119</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Behavior ; Ceramics ; Cohesion ; cracked plate ; debond length ; Debonding ; Dynamic behaviour of bi-material structure ; Dynamic response ; Dynamics ; elastic-brittle and cohesive interface delamination ; Inertia ; Loads (forces) ; Mathematical models ; Shear ; shear lag model</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2015-11, Vol.95 (11), p.1190-1201</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</citedby><cites>FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201300119$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201300119$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ivanova, J.</creatorcontrib><creatorcontrib>Nikolova, G.</creatorcontrib><creatorcontrib>Becker, W.</creatorcontrib><creatorcontrib>Gambin, B.</creatorcontrib><title>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.</description><subject>Behavior</subject><subject>Ceramics</subject><subject>Cohesion</subject><subject>cracked plate</subject><subject>debond length</subject><subject>Debonding</subject><subject>Dynamic behaviour of bi-material structure</subject><subject>Dynamic response</subject><subject>Dynamics</subject><subject>elastic-brittle and cohesive interface delamination</subject><subject>Inertia</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Shear</subject><subject>shear lag model</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLJDEQh4MoOKtePQe8eOmx8uhO5yiDL9BdBB8gSEh3V2u0uzMmM-r412-GkWHZi6c86vuKqh8h-wzGDIAffdm-H3NgAoAxvUFGLOcsk-m1SUYAUmacF2qb_IrxBdKvZmJEHi-GGYbW1kgrfLbvzgfqW2pp5bLeppKzHZ126UbnQ4OBNovB9q6mnbeNG57GdOKfMbp3pG7dqcHKD8vqLtlqbRdx7_vcIbenJzeT8-zyz9nF5Pgyq0VZ6ozntgYQupGiqotaVdBwnZdatlWRl9AwxWWZW1SQp52sZrItUXDEtlAMm0rskMNV32nwb3OMM9O7WGPX2QH9PBqmtOBSpJ0TevAf-uLnYUjTJYqXAEUhZaLGK6oOPsaArZkG19uwMAzMMm2zTNus006CXgkfrsPFD7R5OL66-tfNVq6LM_xcuza8mkIJlZv732eG3Z1fPzB-b5T4CyYCkek</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Ivanova, J.</creator><creator>Nikolova, G.</creator><creator>Becker, W.</creator><creator>Gambin, B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201511</creationdate><title>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</title><author>Ivanova, J. ; Nikolova, G. ; Becker, W. ; Gambin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-25ac0039d43bc6c7b0d295894fb6580d172485ae705152a914f8e32eef671edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavior</topic><topic>Ceramics</topic><topic>Cohesion</topic><topic>cracked plate</topic><topic>debond length</topic><topic>Debonding</topic><topic>Dynamic behaviour of bi-material structure</topic><topic>Dynamic response</topic><topic>Dynamics</topic><topic>elastic-brittle and cohesive interface delamination</topic><topic>Inertia</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Shear</topic><topic>shear lag model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, J.</creatorcontrib><creatorcontrib>Nikolova, G.</creatorcontrib><creatorcontrib>Becker, W.</creatorcontrib><creatorcontrib>Gambin, B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, J.</au><au>Nikolova, G.</au><au>Becker, W.</au><au>Gambin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2015-11</date><risdate>2015</risdate><volume>95</volume><issue>11</issue><spage>1190</spage><epage>1201</epage><pages>1190-1201</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>The paper deals with the elastic and cohesive interface behavior of pre‐cracked bi‐material ceramic‐metal structures under dynamic time harmonic load. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected. Appropriate contact conditions are proposed in order to fit together both elastic and cohesive solutions. The numerical predictions for the cohesive debond length of the bi‐material structures is calculated by the aid of the corresponding value of the elastic debond length at the same loading condition. The influence of loading characteristics i.e. frequencies and amplitude fluctuations on the debond length and the interface shear stress distribution is discussed. The parametric analysis of the results obtained is illustrated by examples of the modern ceramic‐metal composites on metal substrates and is depicted in figures. The shear lag model as well as the Fourier method is applied to find the dynamic response of the considered bi‐material structure, assuming the cohesive interface behaviour, accompanied before of the elastic‐brittle one. In both cases, the growth of debond length is not considered, e.g. at a given loading condition the only corresponding debond length is found. The inertia forces of the already elastic debond parts of the bi‐material structure are neglected.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201300119</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2015-11, Vol.95 (11), p.1190-1201
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1793243019
source Wiley Online Library All Journals
subjects Behavior
Ceramics
Cohesion
cracked plate
debond length
Debonding
Dynamic behaviour of bi-material structure
Dynamic response
Dynamics
elastic-brittle and cohesive interface delamination
Inertia
Loads (forces)
Mathematical models
Shear
shear lag model
title Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20behavior%20of%20a%20bi-material%20plate%20under%20dynamic%20loading.%20Cohesive%20interface%20debonding&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Ivanova,%20J.&rft.date=2015-11&rft.volume=95&rft.issue=11&rft.spage=1190&rft.epage=1201&rft.pages=1190-1201&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300119&rft_dat=%3Cproquest_cross%3E3850194771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728006644&rft_id=info:pmid/&rfr_iscdi=true