Study on the Inter-electrode Process of Aluminum Electrolysis

The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2016-02, Vol.47 (1), p.621-629
Hauptverfasser: Yang, Youjian, Gao, Bingliang, Wang, Zhaowen, Shi, Zhongning, Hu, Xianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 629
container_issue 1
container_start_page 621
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 47
creator Yang, Youjian
Gao, Bingliang
Wang, Zhaowen
Shi, Zhongning
Hu, Xianwei
description The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm −2 is approximately 50 pct.
doi_str_mv 10.1007/s11663-015-0508-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793242866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3925978881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeAFy_RmaZJmoOHZVl1YUFBPYdtmmqXttGkPezbm6UeRPCUIfPNP8NHyCXCDQKo24goJWeAgoGAgskjMkORc4Ya5XGqQXEmJIpTchbjDgCk1nxG7l6GsdpT39Phw9F1P7jAXOvsEHzl6HPw1sVIfU0X7dg1_djR1dRt97GJ5-Sk3rbRXfy8c_J2v3pdPrLN08N6udgwm0sYWG6xdpzXuiqV5RK0LUCXSnKoSpCpK1ReSFtYBORZrTMBpc1K1HnuoEp_c3I95X4G_zW6OJiuida17bZ3fowGleZZnhVJwZxc_UF3fgx9ui5RIu3lSqhE4UTZ4GMMrjafoem2YW8QzEGomYSaJNQchJpDcjbNxMT27y78Sv536BvltnY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758093757</pqid></control><display><type>article</type><title>Study on the Inter-electrode Process of Aluminum Electrolysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Youjian ; Gao, Bingliang ; Wang, Zhaowen ; Shi, Zhongning ; Hu, Xianwei</creator><creatorcontrib>Yang, Youjian ; Gao, Bingliang ; Wang, Zhaowen ; Shi, Zhongning ; Hu, Xianwei</creatorcontrib><description>The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm −2 is approximately 50 pct.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-015-0508-6</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Anodes ; Bubbles ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cryolite ; Current density ; Diffusion layers ; Electrodes ; Electrolysis ; Materials Science ; Metallic Materials ; Metallurgy ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2016-02, Vol.47 (1), p.621-629</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2015</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</citedby><cites>FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-015-0508-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-015-0508-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Yang, Youjian</creatorcontrib><creatorcontrib>Gao, Bingliang</creatorcontrib><creatorcontrib>Wang, Zhaowen</creatorcontrib><creatorcontrib>Shi, Zhongning</creatorcontrib><creatorcontrib>Hu, Xianwei</creatorcontrib><title>Study on the Inter-electrode Process of Aluminum Electrolysis</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm −2 is approximately 50 pct.</description><subject>Aluminum</subject><subject>Anodes</subject><subject>Bubbles</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cryolite</subject><subject>Current density</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gLeAFy_RmaZJmoOHZVl1YUFBPYdtmmqXttGkPezbm6UeRPCUIfPNP8NHyCXCDQKo24goJWeAgoGAgskjMkORc4Ya5XGqQXEmJIpTchbjDgCk1nxG7l6GsdpT39Phw9F1P7jAXOvsEHzl6HPw1sVIfU0X7dg1_djR1dRt97GJ5-Sk3rbRXfy8c_J2v3pdPrLN08N6udgwm0sYWG6xdpzXuiqV5RK0LUCXSnKoSpCpK1ReSFtYBORZrTMBpc1K1HnuoEp_c3I95X4G_zW6OJiuida17bZ3fowGleZZnhVJwZxc_UF3fgx9ui5RIu3lSqhE4UTZ4GMMrjafoem2YW8QzEGomYSaJNQchJpDcjbNxMT27y78Sv536BvltnY0</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Yang, Youjian</creator><creator>Gao, Bingliang</creator><creator>Wang, Zhaowen</creator><creator>Shi, Zhongning</creator><creator>Hu, Xianwei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160201</creationdate><title>Study on the Inter-electrode Process of Aluminum Electrolysis</title><author>Yang, Youjian ; Gao, Bingliang ; Wang, Zhaowen ; Shi, Zhongning ; Hu, Xianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Anodes</topic><topic>Bubbles</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cryolite</topic><topic>Current density</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Youjian</creatorcontrib><creatorcontrib>Gao, Bingliang</creatorcontrib><creatorcontrib>Wang, Zhaowen</creatorcontrib><creatorcontrib>Shi, Zhongning</creatorcontrib><creatorcontrib>Hu, Xianwei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Youjian</au><au>Gao, Bingliang</au><au>Wang, Zhaowen</au><au>Shi, Zhongning</au><au>Hu, Xianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Inter-electrode Process of Aluminum Electrolysis</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>47</volume><issue>1</issue><spage>621</spage><epage>629</epage><pages>621-629</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm −2 is approximately 50 pct.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-015-0508-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2016-02, Vol.47 (1), p.621-629
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_miscellaneous_1793242866
source Springer Nature - Complete Springer Journals
subjects Aluminum
Anodes
Bubbles
Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cryolite
Current density
Diffusion layers
Electrodes
Electrolysis
Materials Science
Metallic Materials
Metallurgy
Nanotechnology
Structural Materials
Surfaces and Interfaces
Thin Films
title Study on the Inter-electrode Process of Aluminum Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Inter-electrode%20Process%20of%20Aluminum%20Electrolysis&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Yang,%20Youjian&rft.date=2016-02-01&rft.volume=47&rft.issue=1&rft.spage=621&rft.epage=629&rft.pages=621-629&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-015-0508-6&rft_dat=%3Cproquest_cross%3E3925978881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758093757&rft_id=info:pmid/&rfr_iscdi=true