Study on the Inter-electrode Process of Aluminum Electrolysis
The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is c...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2016-02, Vol.47 (1), p.621-629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 629 |
---|---|
container_issue | 1 |
container_start_page | 621 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 47 |
creator | Yang, Youjian Gao, Bingliang Wang, Zhaowen Shi, Zhongning Hu, Xianwei |
description | The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm
−2
is approximately 50 pct. |
doi_str_mv | 10.1007/s11663-015-0508-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793242866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3925978881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeAFy_RmaZJmoOHZVl1YUFBPYdtmmqXttGkPezbm6UeRPCUIfPNP8NHyCXCDQKo24goJWeAgoGAgskjMkORc4Ya5XGqQXEmJIpTchbjDgCk1nxG7l6GsdpT39Phw9F1P7jAXOvsEHzl6HPw1sVIfU0X7dg1_djR1dRt97GJ5-Sk3rbRXfy8c_J2v3pdPrLN08N6udgwm0sYWG6xdpzXuiqV5RK0LUCXSnKoSpCpK1ReSFtYBORZrTMBpc1K1HnuoEp_c3I95X4G_zW6OJiuida17bZ3fowGleZZnhVJwZxc_UF3fgx9ui5RIu3lSqhE4UTZ4GMMrjafoem2YW8QzEGomYSaJNQchJpDcjbNxMT27y78Sv536BvltnY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758093757</pqid></control><display><type>article</type><title>Study on the Inter-electrode Process of Aluminum Electrolysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Youjian ; Gao, Bingliang ; Wang, Zhaowen ; Shi, Zhongning ; Hu, Xianwei</creator><creatorcontrib>Yang, Youjian ; Gao, Bingliang ; Wang, Zhaowen ; Shi, Zhongning ; Hu, Xianwei</creatorcontrib><description>The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm
−2
is approximately 50 pct.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-015-0508-6</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Anodes ; Bubbles ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cryolite ; Current density ; Diffusion layers ; Electrodes ; Electrolysis ; Materials Science ; Metallic Materials ; Metallurgy ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2016-02, Vol.47 (1), p.621-629</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2015</rights><rights>The Minerals, Metals & Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</citedby><cites>FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-015-0508-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-015-0508-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Yang, Youjian</creatorcontrib><creatorcontrib>Gao, Bingliang</creatorcontrib><creatorcontrib>Wang, Zhaowen</creatorcontrib><creatorcontrib>Shi, Zhongning</creatorcontrib><creatorcontrib>Hu, Xianwei</creatorcontrib><title>Study on the Inter-electrode Process of Aluminum Electrolysis</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm
−2
is approximately 50 pct.</description><subject>Aluminum</subject><subject>Anodes</subject><subject>Bubbles</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cryolite</subject><subject>Current density</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gLeAFy_RmaZJmoOHZVl1YUFBPYdtmmqXttGkPezbm6UeRPCUIfPNP8NHyCXCDQKo24goJWeAgoGAgskjMkORc4Ya5XGqQXEmJIpTchbjDgCk1nxG7l6GsdpT39Phw9F1P7jAXOvsEHzl6HPw1sVIfU0X7dg1_djR1dRt97GJ5-Sk3rbRXfy8c_J2v3pdPrLN08N6udgwm0sYWG6xdpzXuiqV5RK0LUCXSnKoSpCpK1ReSFtYBORZrTMBpc1K1HnuoEp_c3I95X4G_zW6OJiuida17bZ3fowGleZZnhVJwZxc_UF3fgx9ui5RIu3lSqhE4UTZ4GMMrjafoem2YW8QzEGomYSaJNQchJpDcjbNxMT27y78Sv536BvltnY0</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Yang, Youjian</creator><creator>Gao, Bingliang</creator><creator>Wang, Zhaowen</creator><creator>Shi, Zhongning</creator><creator>Hu, Xianwei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160201</creationdate><title>Study on the Inter-electrode Process of Aluminum Electrolysis</title><author>Yang, Youjian ; Gao, Bingliang ; Wang, Zhaowen ; Shi, Zhongning ; Hu, Xianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4c1fe33f9db7c3609c809b7630db064c157486c8c10132f9250bc2b1944e0d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Anodes</topic><topic>Bubbles</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cryolite</topic><topic>Current density</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Youjian</creatorcontrib><creatorcontrib>Gao, Bingliang</creatorcontrib><creatorcontrib>Wang, Zhaowen</creatorcontrib><creatorcontrib>Shi, Zhongning</creatorcontrib><creatorcontrib>Hu, Xianwei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Youjian</au><au>Gao, Bingliang</au><au>Wang, Zhaowen</au><au>Shi, Zhongning</au><au>Hu, Xianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Inter-electrode Process of Aluminum Electrolysis</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>47</volume><issue>1</issue><spage>621</spage><epage>629</epage><pages>621-629</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm
−2
is approximately 50 pct.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-015-0508-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2016-02, Vol.47 (1), p.621-629 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793242866 |
source | Springer Nature - Complete Springer Journals |
subjects | Aluminum Anodes Bubbles Cathodes Characterization and Evaluation of Materials Chemistry and Materials Science Cryolite Current density Diffusion layers Electrodes Electrolysis Materials Science Metallic Materials Metallurgy Nanotechnology Structural Materials Surfaces and Interfaces Thin Films |
title | Study on the Inter-electrode Process of Aluminum Electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Inter-electrode%20Process%20of%20Aluminum%20Electrolysis&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Yang,%20Youjian&rft.date=2016-02-01&rft.volume=47&rft.issue=1&rft.spage=621&rft.epage=629&rft.pages=621-629&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-015-0508-6&rft_dat=%3Cproquest_cross%3E3925978881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758093757&rft_id=info:pmid/&rfr_iscdi=true |