An implicit viscosity formulation for SPH fluids

We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2015-07, Vol.34 (4), p.1-10
Hauptverfasser: Peer, Andreas, Ihmsen, Markus, Cornelis, Jens, Teschner, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title ACM transactions on graphics
container_volume 34
creator Peer, Andreas
Ihmsen, Markus
Cornelis, Jens
Teschner, Matthias
description We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.
doi_str_mv 10.1145/2766925
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793241296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793241296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-74f34e39ae674920ad9d6dd248819bcb573c753433aac299eb26342deb585e93</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKv4CrPTzWiSLz-TZSnaCgUFuw-ZJAORzGRMZoS-vS3t6t7F4XI5CD0S_EII469UCqEov0ILwrmsJYjmGi2wBFxjwOQW3ZXygzEWjIkFwquhCv0Ygw1T9ReKTSVMh6pLuZ-jmUIaTr36_tpWXZyDK_fopjOx-IdLLtH-_W2_3ta7z83HerWrLXA51ZJ1wDwo44VkimLjlBPOUdY0RLW25RKs5MAAjLFUKd9SAYw63_KGewVL9HyeHXP6nX2ZdH8852M0g09z0UQqoIxQJY7o0xm1OZWSfafHHHqTD5pgfVKiL0rgHxXVUU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793241296</pqid></control><display><type>article</type><title>An implicit viscosity formulation for SPH fluids</title><source>ACM Digital Library Complete</source><creator>Peer, Andreas ; Ihmsen, Markus ; Cornelis, Jens ; Teschner, Matthias</creator><creatorcontrib>Peer, Andreas ; Ihmsen, Markus ; Cornelis, Jens ; Teschner, Matthias</creatorcontrib><description>We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2766925</identifier><language>eng</language><subject>Computational fluid dynamics ; Density ; Deviation ; Fluid flow ; Fluids ; Mathematical models ; Preserves ; Viscosity</subject><ispartof>ACM transactions on graphics, 2015-07, Vol.34 (4), p.1-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-74f34e39ae674920ad9d6dd248819bcb573c753433aac299eb26342deb585e93</citedby><cites>FETCH-LOGICAL-c357t-74f34e39ae674920ad9d6dd248819bcb573c753433aac299eb26342deb585e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peer, Andreas</creatorcontrib><creatorcontrib>Ihmsen, Markus</creatorcontrib><creatorcontrib>Cornelis, Jens</creatorcontrib><creatorcontrib>Teschner, Matthias</creatorcontrib><title>An implicit viscosity formulation for SPH fluids</title><title>ACM transactions on graphics</title><description>We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.</description><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Deviation</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Mathematical models</subject><subject>Preserves</subject><subject>Viscosity</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKv4CrPTzWiSLz-TZSnaCgUFuw-ZJAORzGRMZoS-vS3t6t7F4XI5CD0S_EII469UCqEov0ILwrmsJYjmGi2wBFxjwOQW3ZXygzEWjIkFwquhCv0Ygw1T9ReKTSVMh6pLuZ-jmUIaTr36_tpWXZyDK_fopjOx-IdLLtH-_W2_3ta7z83HerWrLXA51ZJ1wDwo44VkimLjlBPOUdY0RLW25RKs5MAAjLFUKd9SAYw63_KGewVL9HyeHXP6nX2ZdH8852M0g09z0UQqoIxQJY7o0xm1OZWSfafHHHqTD5pgfVKiL0rgHxXVUU8</recordid><startdate>20150727</startdate><enddate>20150727</enddate><creator>Peer, Andreas</creator><creator>Ihmsen, Markus</creator><creator>Cornelis, Jens</creator><creator>Teschner, Matthias</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150727</creationdate><title>An implicit viscosity formulation for SPH fluids</title><author>Peer, Andreas ; Ihmsen, Markus ; Cornelis, Jens ; Teschner, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-74f34e39ae674920ad9d6dd248819bcb573c753433aac299eb26342deb585e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Deviation</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Mathematical models</topic><topic>Preserves</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peer, Andreas</creatorcontrib><creatorcontrib>Ihmsen, Markus</creatorcontrib><creatorcontrib>Cornelis, Jens</creatorcontrib><creatorcontrib>Teschner, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peer, Andreas</au><au>Ihmsen, Markus</au><au>Cornelis, Jens</au><au>Teschner, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implicit viscosity formulation for SPH fluids</atitle><jtitle>ACM transactions on graphics</jtitle><date>2015-07-27</date><risdate>2015</risdate><volume>34</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.</abstract><doi>10.1145/2766925</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2015-07, Vol.34 (4), p.1-10
issn 0730-0301
1557-7368
language eng
recordid cdi_proquest_miscellaneous_1793241296
source ACM Digital Library Complete
subjects Computational fluid dynamics
Density
Deviation
Fluid flow
Fluids
Mathematical models
Preserves
Viscosity
title An implicit viscosity formulation for SPH fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implicit%20viscosity%20formulation%20for%20SPH%20fluids&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Peer,%20Andreas&rft.date=2015-07-27&rft.volume=34&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2766925&rft_dat=%3Cproquest_cross%3E1793241296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793241296&rft_id=info:pmid/&rfr_iscdi=true