Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling

In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high accel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2016-07, Vol.31 (7), p.5270-5278
Hauptverfasser: Sato, Motoki, Yamamoto, Gaku, Gunji, Daisuke, Imura, Takehiro, Fujimoto, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5278
container_issue 7
container_start_page 5270
container_title IEEE transactions on power electronics
container_volume 31
creator Sato, Motoki
Yamamoto, Gaku
Gunji, Daisuke
Imura, Takehiro
Fujimoto, Hiroshi
description In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.
doi_str_mv 10.1109/TPEL.2015.2481182
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793241196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7274365</ieee_id><sourcerecordid>3950234311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsFZ_gHgJePGSOpPd7G6OUqsttCjS0mPYpJOaku7GbCL4701p8eBpDu97j-Fj7BZhhAjJ4_J9Mh9FgPEoEhpRR2dsgInAEBDUORuA1nGok4RfsivvdwAoYsABmz7TN1Wu3pNtA1cE67KhirwPZjZcfxJVwcK1rglWvrTbYGG2ltoyDz7IO2tsTsHYdXXVZ9fsojCVp5vTHbLVy2Q5nobzt9fZ-Gke5jySbUgGlZFKSM7jSGQAoE1OoBLUMgNpdB-AMIjCRFkmRJYZ3GSFjnO-kQmP-ZA9HHfrxn115Nt0X_qcqspYcp1PUSU8EoiJ7NH7f-jOdY3tv-spKRQCV7qn8EjljfO-oSKtm3Jvmp8UIT24TQ9u04Pb9OS279wdOyUR_fEqUoLLmP8CJ9FzMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764710378</pqid></control><display><type>article</type><title>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</title><source>IEEE Electronic Library (IEL)</source><creator>Sato, Motoki ; Yamamoto, Gaku ; Gunji, Daisuke ; Imura, Takehiro ; Fujimoto, Hiroshi</creator><creatorcontrib>Sato, Motoki ; Yamamoto, Gaku ; Gunji, Daisuke ; Imura, Takehiro ; Fujimoto, Hiroshi</creatorcontrib><description>In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2015.2481182</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Automotive wheels ; Cables ; Coils ; Disengaging ; Electric potential ; Electric power generation ; Electric Vehicles ; Hysteresis motors ; In-Wheel Motor ; Inverters ; Magnetic resonance ; Magnetic Resonance Coupling ; Motion control ; Motors ; Vehicles ; Vibration ; Voltage ; Voltage control ; Wheels ; Wireless communication ; Wireless Power Transfer</subject><ispartof>IEEE transactions on power electronics, 2016-07, Vol.31 (7), p.5270-5278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</citedby><cites>FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</cites><orcidid>0000-0002-8866-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7274365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7274365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sato, Motoki</creatorcontrib><creatorcontrib>Yamamoto, Gaku</creatorcontrib><creatorcontrib>Gunji, Daisuke</creatorcontrib><creatorcontrib>Imura, Takehiro</creatorcontrib><creatorcontrib>Fujimoto, Hiroshi</creatorcontrib><title>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.</description><subject>Acceleration</subject><subject>Automotive wheels</subject><subject>Cables</subject><subject>Coils</subject><subject>Disengaging</subject><subject>Electric potential</subject><subject>Electric power generation</subject><subject>Electric Vehicles</subject><subject>Hysteresis motors</subject><subject>In-Wheel Motor</subject><subject>Inverters</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Coupling</subject><subject>Motion control</subject><subject>Motors</subject><subject>Vehicles</subject><subject>Vibration</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Wheels</subject><subject>Wireless communication</subject><subject>Wireless Power Transfer</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQhRdRsFZ_gHgJePGSOpPd7G6OUqsttCjS0mPYpJOaku7GbCL4701p8eBpDu97j-Fj7BZhhAjJ4_J9Mh9FgPEoEhpRR2dsgInAEBDUORuA1nGok4RfsivvdwAoYsABmz7TN1Wu3pNtA1cE67KhirwPZjZcfxJVwcK1rglWvrTbYGG2ltoyDz7IO2tsTsHYdXXVZ9fsojCVp5vTHbLVy2Q5nobzt9fZ-Gke5jySbUgGlZFKSM7jSGQAoE1OoBLUMgNpdB-AMIjCRFkmRJYZ3GSFjnO-kQmP-ZA9HHfrxn115Nt0X_qcqspYcp1PUSU8EoiJ7NH7f-jOdY3tv-spKRQCV7qn8EjljfO-oSKtm3Jvmp8UIT24TQ9u04Pb9OS279wdOyUR_fEqUoLLmP8CJ9FzMA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Sato, Motoki</creator><creator>Yamamoto, Gaku</creator><creator>Gunji, Daisuke</creator><creator>Imura, Takehiro</creator><creator>Fujimoto, Hiroshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0002-8866-0032</orcidid></search><sort><creationdate>201607</creationdate><title>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</title><author>Sato, Motoki ; Yamamoto, Gaku ; Gunji, Daisuke ; Imura, Takehiro ; Fujimoto, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceleration</topic><topic>Automotive wheels</topic><topic>Cables</topic><topic>Coils</topic><topic>Disengaging</topic><topic>Electric potential</topic><topic>Electric power generation</topic><topic>Electric Vehicles</topic><topic>Hysteresis motors</topic><topic>In-Wheel Motor</topic><topic>Inverters</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Coupling</topic><topic>Motion control</topic><topic>Motors</topic><topic>Vehicles</topic><topic>Vibration</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Wheels</topic><topic>Wireless communication</topic><topic>Wireless Power Transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Motoki</creatorcontrib><creatorcontrib>Yamamoto, Gaku</creatorcontrib><creatorcontrib>Gunji, Daisuke</creatorcontrib><creatorcontrib>Imura, Takehiro</creatorcontrib><creatorcontrib>Fujimoto, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sato, Motoki</au><au>Yamamoto, Gaku</au><au>Gunji, Daisuke</au><au>Imura, Takehiro</au><au>Fujimoto, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2016-07</date><risdate>2016</risdate><volume>31</volume><issue>7</issue><spage>5270</spage><epage>5278</epage><pages>5270-5278</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2015.2481182</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8866-0032</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2016-07, Vol.31 (7), p.5270-5278
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_miscellaneous_1793241196
source IEEE Electronic Library (IEL)
subjects Acceleration
Automotive wheels
Cables
Coils
Disengaging
Electric potential
Electric power generation
Electric Vehicles
Hysteresis motors
In-Wheel Motor
Inverters
Magnetic resonance
Magnetic Resonance Coupling
Motion control
Motors
Vehicles
Vibration
Voltage
Voltage control
Wheels
Wireless communication
Wireless Power Transfer
title Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Wireless%20In-Wheel%20Motor%20Using%20Magnetic%20Resonance%20Coupling&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Sato,%20Motoki&rft.date=2016-07&rft.volume=31&rft.issue=7&rft.spage=5270&rft.epage=5278&rft.pages=5270-5278&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2015.2481182&rft_dat=%3Cproquest_RIE%3E3950234311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764710378&rft_id=info:pmid/&rft_ieee_id=7274365&rfr_iscdi=true