Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling
In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high accel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2016-07, Vol.31 (7), p.5270-5278 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5278 |
---|---|
container_issue | 7 |
container_start_page | 5270 |
container_title | IEEE transactions on power electronics |
container_volume | 31 |
creator | Sato, Motoki Yamamoto, Gaku Gunji, Daisuke Imura, Takehiro Fujimoto, Hiroshi |
description | In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency. |
doi_str_mv | 10.1109/TPEL.2015.2481182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793241196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7274365</ieee_id><sourcerecordid>3950234311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsFZ_gHgJePGSOpPd7G6OUqsttCjS0mPYpJOaku7GbCL4701p8eBpDu97j-Fj7BZhhAjJ4_J9Mh9FgPEoEhpRR2dsgInAEBDUORuA1nGok4RfsivvdwAoYsABmz7TN1Wu3pNtA1cE67KhirwPZjZcfxJVwcK1rglWvrTbYGG2ltoyDz7IO2tsTsHYdXXVZ9fsojCVp5vTHbLVy2Q5nobzt9fZ-Gke5jySbUgGlZFKSM7jSGQAoE1OoBLUMgNpdB-AMIjCRFkmRJYZ3GSFjnO-kQmP-ZA9HHfrxn115Nt0X_qcqspYcp1PUSU8EoiJ7NH7f-jOdY3tv-spKRQCV7qn8EjljfO-oSKtm3Jvmp8UIT24TQ9u04Pb9OS279wdOyUR_fEqUoLLmP8CJ9FzMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764710378</pqid></control><display><type>article</type><title>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</title><source>IEEE Electronic Library (IEL)</source><creator>Sato, Motoki ; Yamamoto, Gaku ; Gunji, Daisuke ; Imura, Takehiro ; Fujimoto, Hiroshi</creator><creatorcontrib>Sato, Motoki ; Yamamoto, Gaku ; Gunji, Daisuke ; Imura, Takehiro ; Fujimoto, Hiroshi</creatorcontrib><description>In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2015.2481182</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Automotive wheels ; Cables ; Coils ; Disengaging ; Electric potential ; Electric power generation ; Electric Vehicles ; Hysteresis motors ; In-Wheel Motor ; Inverters ; Magnetic resonance ; Magnetic Resonance Coupling ; Motion control ; Motors ; Vehicles ; Vibration ; Voltage ; Voltage control ; Wheels ; Wireless communication ; Wireless Power Transfer</subject><ispartof>IEEE transactions on power electronics, 2016-07, Vol.31 (7), p.5270-5278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</citedby><cites>FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</cites><orcidid>0000-0002-8866-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7274365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7274365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sato, Motoki</creatorcontrib><creatorcontrib>Yamamoto, Gaku</creatorcontrib><creatorcontrib>Gunji, Daisuke</creatorcontrib><creatorcontrib>Imura, Takehiro</creatorcontrib><creatorcontrib>Fujimoto, Hiroshi</creatorcontrib><title>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.</description><subject>Acceleration</subject><subject>Automotive wheels</subject><subject>Cables</subject><subject>Coils</subject><subject>Disengaging</subject><subject>Electric potential</subject><subject>Electric power generation</subject><subject>Electric Vehicles</subject><subject>Hysteresis motors</subject><subject>In-Wheel Motor</subject><subject>Inverters</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Coupling</subject><subject>Motion control</subject><subject>Motors</subject><subject>Vehicles</subject><subject>Vibration</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Wheels</subject><subject>Wireless communication</subject><subject>Wireless Power Transfer</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQhRdRsFZ_gHgJePGSOpPd7G6OUqsttCjS0mPYpJOaku7GbCL4701p8eBpDu97j-Fj7BZhhAjJ4_J9Mh9FgPEoEhpRR2dsgInAEBDUORuA1nGok4RfsivvdwAoYsABmz7TN1Wu3pNtA1cE67KhirwPZjZcfxJVwcK1rglWvrTbYGG2ltoyDz7IO2tsTsHYdXXVZ9fsojCVp5vTHbLVy2Q5nobzt9fZ-Gke5jySbUgGlZFKSM7jSGQAoE1OoBLUMgNpdB-AMIjCRFkmRJYZ3GSFjnO-kQmP-ZA9HHfrxn115Nt0X_qcqspYcp1PUSU8EoiJ7NH7f-jOdY3tv-spKRQCV7qn8EjljfO-oSKtm3Jvmp8UIT24TQ9u04Pb9OS279wdOyUR_fEqUoLLmP8CJ9FzMA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Sato, Motoki</creator><creator>Yamamoto, Gaku</creator><creator>Gunji, Daisuke</creator><creator>Imura, Takehiro</creator><creator>Fujimoto, Hiroshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0002-8866-0032</orcidid></search><sort><creationdate>201607</creationdate><title>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</title><author>Sato, Motoki ; Yamamoto, Gaku ; Gunji, Daisuke ; Imura, Takehiro ; Fujimoto, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ea17a674633524b0008ace079186b06a863304a114a2bb44bba1dbf85c3d69353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceleration</topic><topic>Automotive wheels</topic><topic>Cables</topic><topic>Coils</topic><topic>Disengaging</topic><topic>Electric potential</topic><topic>Electric power generation</topic><topic>Electric Vehicles</topic><topic>Hysteresis motors</topic><topic>In-Wheel Motor</topic><topic>Inverters</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Coupling</topic><topic>Motion control</topic><topic>Motors</topic><topic>Vehicles</topic><topic>Vibration</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Wheels</topic><topic>Wireless communication</topic><topic>Wireless Power Transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Motoki</creatorcontrib><creatorcontrib>Yamamoto, Gaku</creatorcontrib><creatorcontrib>Gunji, Daisuke</creatorcontrib><creatorcontrib>Imura, Takehiro</creatorcontrib><creatorcontrib>Fujimoto, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sato, Motoki</au><au>Yamamoto, Gaku</au><au>Gunji, Daisuke</au><au>Imura, Takehiro</au><au>Fujimoto, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2016-07</date><risdate>2016</risdate><volume>31</volume><issue>7</issue><spage>5270</spage><epage>5278</epage><pages>5270-5278</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In-wheel motors (IWMs) in electric vehicles are particularly important for motion control. A conventional IWM is powered from a battery aboard the vehicle via cables. Since power cables and signal cables of an IWM are exposed to harsh environments, they can possibly become disconnected by high acceleration or vibration. In order to overcome this problem, the wireless-in wheel motor (W-IWM) has been proposed. The risk of disconnection would disappear if the cables of the IWM are removed. One way to implement wireless power transfer is by utilizing the magnetic resonance coupling method. However, motion of the W-IWM, and thus, a misalignment between the wheel and the vehicle, leads to variations in the secondary-side voltage provided. To account for this, this paper discusses two new control methods. One proposed method maintains the secondary voltage using a hysteresis comparator. The other proposed method estimates the secondary inverter output power, applying it to a feedforward controller in order to keep the secondary dc-link voltage constant. Experimental results show that these methods can drive a W-IWM effectively with high efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2015.2481182</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8866-0032</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2016-07, Vol.31 (7), p.5270-5278 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793241196 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Automotive wheels Cables Coils Disengaging Electric potential Electric power generation Electric Vehicles Hysteresis motors In-Wheel Motor Inverters Magnetic resonance Magnetic Resonance Coupling Motion control Motors Vehicles Vibration Voltage Voltage control Wheels Wireless communication Wireless Power Transfer |
title | Development of Wireless In-Wheel Motor Using Magnetic Resonance Coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Wireless%20In-Wheel%20Motor%20Using%20Magnetic%20Resonance%20Coupling&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Sato,%20Motoki&rft.date=2016-07&rft.volume=31&rft.issue=7&rft.spage=5270&rft.epage=5278&rft.pages=5270-5278&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2015.2481182&rft_dat=%3Cproquest_RIE%3E3950234311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764710378&rft_id=info:pmid/&rft_ieee_id=7274365&rfr_iscdi=true |