PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION

ABSTRACT We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector repres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-10, Vol.812 (1), p.1-11
Hauptverfasser: Boucheron, Laura E., Al-Ghraibah, Amani, McAteer, R. T. James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 812
creator Boucheron, Laura E.
Al-Ghraibah, Amani
McAteer, R. T. James
description ABSTRACT We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.
doi_str_mv 10.1088/0004-637X/812/1/51
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793239397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793239397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-5ab484eb49faa2222ab2ab19b3f7006c4f2f7f63b54c4a81e25dcc617808b13e3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRsH78AU8LXryk3c_s7rHEbQ3UpiSpiJclWTcYqU3Npgf_vQkRj-IwzDDDM8PwDgA3GE0xknKGEGJBSMXzTGIywzOOT8AEcyoDRrk4BZNf4BxceP8-lESpCXjepPo-jvI4WcNkAbNkNU_hog8aZvGLhvP1PczjRx3kSTC2t1m8XsJsu9kkaQ6fdJQnKXycRw_xWsNUL1OdZf22K3BWFTvvrn_yJdgudB49BKtkGUfzVWCZQl3Ai5JJ5kqmqqIgvRVl71iVtBIIhZZVpBJVSEvOLCskdoS_WhtiIZEsMXX0EtyOexvf1cbbunP2zTb7vbOdIYRjKRnuqbuROrTN59H5znzU3rrdrti75ugNFooSqqgS_0BDyUWoRNijZERt23jfusoc2vqjaL8MRmb4ixl0NoPspv-LwYYPp0zHobo5mPfm2O57ef4a-AaMKoUb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768576976</pqid></control><display><type>article</type><title>PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION</title><source>Institute of Physics Open Access Journal Titles</source><creator>Boucheron, Laura E. ; Al-Ghraibah, Amani ; McAteer, R. T. James</creator><creatorcontrib>Boucheron, Laura E. ; Al-Ghraibah, Amani ; McAteer, R. T. James</creatorcontrib><description>ABSTRACT We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/812/1/51</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Complexity ; DATA ANALYSIS ; Errors ; Flares ; GOES SATELLITES ; MAGNETIC FIELDS ; MAPPING ; Mathematical analysis ; methods: data analysis ; methods: statistical ; PHOTOSPHERE ; Regression ; SOLAR FLARES ; SPACE ; SUN ; Sun: flares ; Sun: magnetic fields ; Sun: photosphere ; Support vector machines</subject><ispartof>The Astrophysical journal, 2015-10, Vol.812 (1), p.1-11</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-5ab484eb49faa2222ab2ab19b3f7006c4f2f7f63b54c4a81e25dcc617808b13e3</citedby><cites>FETCH-LOGICAL-c490t-5ab484eb49faa2222ab2ab19b3f7006c4f2f7f63b54c4a81e25dcc617808b13e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/812/1/51/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/812/1/51$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22518841$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boucheron, Laura E.</creatorcontrib><creatorcontrib>Al-Ghraibah, Amani</creatorcontrib><creatorcontrib>McAteer, R. T. James</creatorcontrib><title>PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Complexity</subject><subject>DATA ANALYSIS</subject><subject>Errors</subject><subject>Flares</subject><subject>GOES SATELLITES</subject><subject>MAGNETIC FIELDS</subject><subject>MAPPING</subject><subject>Mathematical analysis</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>PHOTOSPHERE</subject><subject>Regression</subject><subject>SOLAR FLARES</subject><subject>SPACE</subject><subject>SUN</subject><subject>Sun: flares</subject><subject>Sun: magnetic fields</subject><subject>Sun: photosphere</subject><subject>Support vector machines</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRsH78AU8LXryk3c_s7rHEbQ3UpiSpiJclWTcYqU3Npgf_vQkRj-IwzDDDM8PwDgA3GE0xknKGEGJBSMXzTGIywzOOT8AEcyoDRrk4BZNf4BxceP8-lESpCXjepPo-jvI4WcNkAbNkNU_hog8aZvGLhvP1PczjRx3kSTC2t1m8XsJsu9kkaQ6fdJQnKXycRw_xWsNUL1OdZf22K3BWFTvvrn_yJdgudB49BKtkGUfzVWCZQl3Ai5JJ5kqmqqIgvRVl71iVtBIIhZZVpBJVSEvOLCskdoS_WhtiIZEsMXX0EtyOexvf1cbbunP2zTb7vbOdIYRjKRnuqbuROrTN59H5znzU3rrdrti75ugNFooSqqgS_0BDyUWoRNijZERt23jfusoc2vqjaL8MRmb4ixl0NoPspv-LwYYPp0zHobo5mPfm2O57ef4a-AaMKoUb</recordid><startdate>20151010</startdate><enddate>20151010</enddate><creator>Boucheron, Laura E.</creator><creator>Al-Ghraibah, Amani</creator><creator>McAteer, R. T. James</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151010</creationdate><title>PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION</title><author>Boucheron, Laura E. ; Al-Ghraibah, Amani ; McAteer, R. T. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-5ab484eb49faa2222ab2ab19b3f7006c4f2f7f63b54c4a81e25dcc617808b13e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Complexity</topic><topic>DATA ANALYSIS</topic><topic>Errors</topic><topic>Flares</topic><topic>GOES SATELLITES</topic><topic>MAGNETIC FIELDS</topic><topic>MAPPING</topic><topic>Mathematical analysis</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>PHOTOSPHERE</topic><topic>Regression</topic><topic>SOLAR FLARES</topic><topic>SPACE</topic><topic>SUN</topic><topic>Sun: flares</topic><topic>Sun: magnetic fields</topic><topic>Sun: photosphere</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boucheron, Laura E.</creatorcontrib><creatorcontrib>Al-Ghraibah, Amani</creatorcontrib><creatorcontrib>McAteer, R. T. James</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boucheron, Laura E.</au><au>Al-Ghraibah, Amani</au><au>McAteer, R. T. James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-10-10</date><risdate>2015</risdate><volume>812</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/812/1/51</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2015-10, Vol.812 (1), p.1-11
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_miscellaneous_1793239397
source Institute of Physics Open Access Journal Titles
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Complexity
DATA ANALYSIS
Errors
Flares
GOES SATELLITES
MAGNETIC FIELDS
MAPPING
Mathematical analysis
methods: data analysis
methods: statistical
PHOTOSPHERE
Regression
SOLAR FLARES
SPACE
SUN
Sun: flares
Sun: magnetic fields
Sun: photosphere
Support vector machines
title PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREDICTION%20OF%20SOLAR%20FLARE%20SIZE%20AND%20TIME-TO-FLARE%20USING%20SUPPORT%20VECTOR%20MACHINE%20REGRESSION&rft.jtitle=The%20Astrophysical%20journal&rft.au=Boucheron,%20Laura%20E.&rft.date=2015-10-10&rft.volume=812&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/812/1/51&rft_dat=%3Cproquest_O3W%3E1793239397%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768576976&rft_id=info:pmid/&rfr_iscdi=true