A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification

The twin hyper-sphere support vector machine (THSVM) classifies two classes of samples via two hyper-spheres instead of a pair of nonparallel hyper-planes as in the conversional twin support vector machine (TSVM). Moreover THSVM avoids the matrix inverse operation when solving two dual quadratic pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2016-03, Vol.95, p.75-85
Hauptverfasser: Xu, Yitian, Yang, Zhiji, Zhang, Yuqun, Pan, Xianli, Wang, Laisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 75
container_title Knowledge-based systems
container_volume 95
creator Xu, Yitian
Yang, Zhiji
Zhang, Yuqun
Pan, Xianli
Wang, Laisheng
description The twin hyper-sphere support vector machine (THSVM) classifies two classes of samples via two hyper-spheres instead of a pair of nonparallel hyper-planes as in the conversional twin support vector machine (TSVM). Moreover THSVM avoids the matrix inverse operation when solving two dual quadratic programming problems (QPPs). However it cannot yield a desirable result when dealing with the imbalanced data classification. To improve the generalization performance, we propose a maximum margin and minimum volume hyper-spheres machine with pinball loss (Pin-M3HM) for the imbalanced data classification in this paper. The basic idea is to construct two hyper-spheres with different centers and radiuses in a sequential order. The first one contains as many examples in majority class as possible, and the second one covers minority class of examples as possible. Moreover the margin between two hyper-spheres is as large as possible. Besides, the pinball loss function is introduced into it to avoid the noise disturbance. Experimental results on 24 imbalanced datasets from the repositories of UCI and KEEL, and a real spectral dataset of Chinese grape wines indicate that our proposed Pin-M3HM yields a good generalization performance for the imbalanced data classification.
doi_str_mv 10.1016/j.knosys.2015.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793238662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705115004773</els_id><sourcerecordid>1793238662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-6f964e3ec1dc7ea2c5194c56190e5f490cebd6baf22437f2aa75175bdbcf22a73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhx85JJgO3FcX5Cqij-pEhc4W46zIS6JE-yk0LfHJZw5jXY0u9r5ELqmJKWEFre79MP14RBSRihPKUsJ4SdoQVeCJSIn8hQtiOQkEYTTc3QRwo4QwhhdLZBb405_227qovp367B2Fe6s-7X2fTt1gJvDAD4JQwMeQsyZxjrAX3Zs8GBdqdsWt30IuO49tl2ctTNQ4UqPGptWh2Bra_Roe3eJzmrdBrj60yV6e7h_3Twl25fH5816m5hcyDEpalnkkIGhlRGgmeFU5oYXVBLgdS6JgbIqSl0zlmeiZloLTgUvq9JES4tsiW7mu4PvPycIo-psMNDGz6CfgqJCZixbFQWL0XyOGh87eKjV4G1kcVCUqCNetVMzXnXEqyhTEW9cu5vXINbYW_AqGAvH3taDGVXV2_8P_ACIK4h3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793238662</pqid></control><display><type>article</type><title>A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Yitian ; Yang, Zhiji ; Zhang, Yuqun ; Pan, Xianli ; Wang, Laisheng</creator><creatorcontrib>Xu, Yitian ; Yang, Zhiji ; Zhang, Yuqun ; Pan, Xianli ; Wang, Laisheng</creatorcontrib><description>The twin hyper-sphere support vector machine (THSVM) classifies two classes of samples via two hyper-spheres instead of a pair of nonparallel hyper-planes as in the conversional twin support vector machine (TSVM). Moreover THSVM avoids the matrix inverse operation when solving two dual quadratic programming problems (QPPs). However it cannot yield a desirable result when dealing with the imbalanced data classification. To improve the generalization performance, we propose a maximum margin and minimum volume hyper-spheres machine with pinball loss (Pin-M3HM) for the imbalanced data classification in this paper. The basic idea is to construct two hyper-spheres with different centers and radiuses in a sequential order. The first one contains as many examples in majority class as possible, and the second one covers minority class of examples as possible. Moreover the margin between two hyper-spheres is as large as possible. Besides, the pinball loss function is introduced into it to avoid the noise disturbance. Experimental results on 24 imbalanced datasets from the repositories of UCI and KEEL, and a real spectral dataset of Chinese grape wines indicate that our proposed Pin-M3HM yields a good generalization performance for the imbalanced data classification.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2015.12.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Classification ; Dealing ; Disturbances ; Hyper-sphere ; Imbalanced data classification ; Inverse ; Knowledge base ; Maximum margin ; Minimum volume ; Pinball loss ; Quadratic programming ; Spectra ; Support vector machines</subject><ispartof>Knowledge-based systems, 2016-03, Vol.95, p.75-85</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-6f964e3ec1dc7ea2c5194c56190e5f490cebd6baf22437f2aa75175bdbcf22a73</citedby><cites>FETCH-LOGICAL-c479t-6f964e3ec1dc7ea2c5194c56190e5f490cebd6baf22437f2aa75175bdbcf22a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2015.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Yitian</creatorcontrib><creatorcontrib>Yang, Zhiji</creatorcontrib><creatorcontrib>Zhang, Yuqun</creatorcontrib><creatorcontrib>Pan, Xianli</creatorcontrib><creatorcontrib>Wang, Laisheng</creatorcontrib><title>A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification</title><title>Knowledge-based systems</title><description>The twin hyper-sphere support vector machine (THSVM) classifies two classes of samples via two hyper-spheres instead of a pair of nonparallel hyper-planes as in the conversional twin support vector machine (TSVM). Moreover THSVM avoids the matrix inverse operation when solving two dual quadratic programming problems (QPPs). However it cannot yield a desirable result when dealing with the imbalanced data classification. To improve the generalization performance, we propose a maximum margin and minimum volume hyper-spheres machine with pinball loss (Pin-M3HM) for the imbalanced data classification in this paper. The basic idea is to construct two hyper-spheres with different centers and radiuses in a sequential order. The first one contains as many examples in majority class as possible, and the second one covers minority class of examples as possible. Moreover the margin between two hyper-spheres is as large as possible. Besides, the pinball loss function is introduced into it to avoid the noise disturbance. Experimental results on 24 imbalanced datasets from the repositories of UCI and KEEL, and a real spectral dataset of Chinese grape wines indicate that our proposed Pin-M3HM yields a good generalization performance for the imbalanced data classification.</description><subject>Classification</subject><subject>Dealing</subject><subject>Disturbances</subject><subject>Hyper-sphere</subject><subject>Imbalanced data classification</subject><subject>Inverse</subject><subject>Knowledge base</subject><subject>Maximum margin</subject><subject>Minimum volume</subject><subject>Pinball loss</subject><subject>Quadratic programming</subject><subject>Spectra</subject><subject>Support vector machines</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhx85JJgO3FcX5Cqij-pEhc4W46zIS6JE-yk0LfHJZw5jXY0u9r5ELqmJKWEFre79MP14RBSRihPKUsJ4SdoQVeCJSIn8hQtiOQkEYTTc3QRwo4QwhhdLZBb405_227qovp367B2Fe6s-7X2fTt1gJvDAD4JQwMeQsyZxjrAX3Zs8GBdqdsWt30IuO49tl2ctTNQ4UqPGptWh2Bra_Roe3eJzmrdBrj60yV6e7h_3Twl25fH5816m5hcyDEpalnkkIGhlRGgmeFU5oYXVBLgdS6JgbIqSl0zlmeiZloLTgUvq9JES4tsiW7mu4PvPycIo-psMNDGz6CfgqJCZixbFQWL0XyOGh87eKjV4G1kcVCUqCNetVMzXnXEqyhTEW9cu5vXINbYW_AqGAvH3taDGVXV2_8P_ACIK4h3</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Xu, Yitian</creator><creator>Yang, Zhiji</creator><creator>Zhang, Yuqun</creator><creator>Pan, Xianli</creator><creator>Wang, Laisheng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160301</creationdate><title>A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification</title><author>Xu, Yitian ; Yang, Zhiji ; Zhang, Yuqun ; Pan, Xianli ; Wang, Laisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-6f964e3ec1dc7ea2c5194c56190e5f490cebd6baf22437f2aa75175bdbcf22a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classification</topic><topic>Dealing</topic><topic>Disturbances</topic><topic>Hyper-sphere</topic><topic>Imbalanced data classification</topic><topic>Inverse</topic><topic>Knowledge base</topic><topic>Maximum margin</topic><topic>Minimum volume</topic><topic>Pinball loss</topic><topic>Quadratic programming</topic><topic>Spectra</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yitian</creatorcontrib><creatorcontrib>Yang, Zhiji</creatorcontrib><creatorcontrib>Zhang, Yuqun</creatorcontrib><creatorcontrib>Pan, Xianli</creatorcontrib><creatorcontrib>Wang, Laisheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yitian</au><au>Yang, Zhiji</au><au>Zhang, Yuqun</au><au>Pan, Xianli</au><au>Wang, Laisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification</atitle><jtitle>Knowledge-based systems</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>95</volume><spage>75</spage><epage>85</epage><pages>75-85</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The twin hyper-sphere support vector machine (THSVM) classifies two classes of samples via two hyper-spheres instead of a pair of nonparallel hyper-planes as in the conversional twin support vector machine (TSVM). Moreover THSVM avoids the matrix inverse operation when solving two dual quadratic programming problems (QPPs). However it cannot yield a desirable result when dealing with the imbalanced data classification. To improve the generalization performance, we propose a maximum margin and minimum volume hyper-spheres machine with pinball loss (Pin-M3HM) for the imbalanced data classification in this paper. The basic idea is to construct two hyper-spheres with different centers and radiuses in a sequential order. The first one contains as many examples in majority class as possible, and the second one covers minority class of examples as possible. Moreover the margin between two hyper-spheres is as large as possible. Besides, the pinball loss function is introduced into it to avoid the noise disturbance. Experimental results on 24 imbalanced datasets from the repositories of UCI and KEEL, and a real spectral dataset of Chinese grape wines indicate that our proposed Pin-M3HM yields a good generalization performance for the imbalanced data classification.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2015.12.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2016-03, Vol.95, p.75-85
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_1793238662
source ScienceDirect Journals (5 years ago - present)
subjects Classification
Dealing
Disturbances
Hyper-sphere
Imbalanced data classification
Inverse
Knowledge base
Maximum margin
Minimum volume
Pinball loss
Quadratic programming
Spectra
Support vector machines
title A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20maximum%20margin%20and%20minimum%20volume%20hyper-spheres%20machine%20with%20pinball%20loss%20for%20imbalanced%20data%20classification&rft.jtitle=Knowledge-based%20systems&rft.au=Xu,%20Yitian&rft.date=2016-03-01&rft.volume=95&rft.spage=75&rft.epage=85&rft.pages=75-85&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2015.12.005&rft_dat=%3Cproquest_cross%3E1793238662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793238662&rft_id=info:pmid/&rft_els_id=S0950705115004773&rfr_iscdi=true