Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach

This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-04, Vol.337-338, p.72-81
Hauptverfasser: Chen, Jun, Xu, Shengyuan, Zhang, Baoyong, Qi, Zhidong, Li, Ze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue
container_start_page 72
container_title Information sciences
container_volume 337-338
creator Chen, Jun
Xu, Shengyuan
Zhang, Baoyong
Qi, Zhidong
Li, Ze
description This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.
doi_str_mv 10.1016/j.ins.2015.12.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793233248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025515009160</els_id><sourcerecordid>1793233248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGweWRKO7cRJYaoqbqKCgbJiuc6JcEnjYjuV2ol34A15ElKVmemc4fvP5SPknEHKgMnLRWrbkHJgecp4Crw4IANWFjyRfMQOyQCAQwI8z4_JSQgLAMgKKQfk7cmtsaEh6rltbNxQ49rKRuvaQGvnaWWD8RgxiXaJdPbz9f1C62673dCwCRGX4YqO6aN3LZoP9MnKu6ozkepV32nzfkqOat0EPPurQ_J6ezOb3CfT57uHyXiaGCEgJrzMQBa1qWrEQtZmzgtpDMpaaynmkAGiGCGUbC6gzExuNDIoc65lT3MsxZBc7Of2az87DFEt-8OxaXSLrguKFSPBheDZDmV71HgXgsdarbxdar9RDNTOpVqo3qXauVSMq95ln7neZ7D_YW3Rq2AstgYr69FEVTn7T_oXix9-_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793233248</pqid></control><display><type>article</type><title>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Jun ; Xu, Shengyuan ; Zhang, Baoyong ; Qi, Zhidong ; Li, Ze</creator><creatorcontrib>Chen, Jun ; Xu, Shengyuan ; Zhang, Baoyong ; Qi, Zhidong ; Li, Ze</creatorcontrib><description>This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2015.12.027</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fuzzy systems ; Homogeneous matrix polynomial ; Kronecker product ; Linear matrix inequality ; Lyapunov functions ; Mathematical analysis ; Mathematical models ; Polynomials ; Stability ; State vectors ; Strategy ; Takagi–Sugeno fuzzy system</subject><ispartof>Information sciences, 2016-04, Vol.337-338, p.72-81</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</citedby><cites>FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025515009160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xu, Shengyuan</creatorcontrib><creatorcontrib>Zhang, Baoyong</creatorcontrib><creatorcontrib>Qi, Zhidong</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><title>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</title><title>Information sciences</title><description>This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.</description><subject>Fuzzy systems</subject><subject>Homogeneous matrix polynomial</subject><subject>Kronecker product</subject><subject>Linear matrix inequality</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Stability</subject><subject>State vectors</subject><subject>Strategy</subject><subject>Takagi–Sugeno fuzzy system</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGweWRKO7cRJYaoqbqKCgbJiuc6JcEnjYjuV2ol34A15ElKVmemc4fvP5SPknEHKgMnLRWrbkHJgecp4Crw4IANWFjyRfMQOyQCAQwI8z4_JSQgLAMgKKQfk7cmtsaEh6rltbNxQ49rKRuvaQGvnaWWD8RgxiXaJdPbz9f1C62673dCwCRGX4YqO6aN3LZoP9MnKu6ozkepV32nzfkqOat0EPPurQ_J6ezOb3CfT57uHyXiaGCEgJrzMQBa1qWrEQtZmzgtpDMpaaynmkAGiGCGUbC6gzExuNDIoc65lT3MsxZBc7Of2az87DFEt-8OxaXSLrguKFSPBheDZDmV71HgXgsdarbxdar9RDNTOpVqo3qXauVSMq95ln7neZ7D_YW3Rq2AstgYr69FEVTn7T_oXix9-_Q</recordid><startdate>20160410</startdate><enddate>20160410</enddate><creator>Chen, Jun</creator><creator>Xu, Shengyuan</creator><creator>Zhang, Baoyong</creator><creator>Qi, Zhidong</creator><creator>Li, Ze</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160410</creationdate><title>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</title><author>Chen, Jun ; Xu, Shengyuan ; Zhang, Baoyong ; Qi, Zhidong ; Li, Ze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fuzzy systems</topic><topic>Homogeneous matrix polynomial</topic><topic>Kronecker product</topic><topic>Linear matrix inequality</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Stability</topic><topic>State vectors</topic><topic>Strategy</topic><topic>Takagi–Sugeno fuzzy system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xu, Shengyuan</creatorcontrib><creatorcontrib>Zhang, Baoyong</creatorcontrib><creatorcontrib>Qi, Zhidong</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jun</au><au>Xu, Shengyuan</au><au>Zhang, Baoyong</au><au>Qi, Zhidong</au><au>Li, Ze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</atitle><jtitle>Information sciences</jtitle><date>2016-04-10</date><risdate>2016</risdate><volume>337-338</volume><spage>72</spage><epage>81</epage><pages>72-81</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2015.12.027</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-04, Vol.337-338, p.72-81
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1793233248
source Elsevier ScienceDirect Journals Complete
subjects Fuzzy systems
Homogeneous matrix polynomial
Kronecker product
Linear matrix inequality
Lyapunov functions
Mathematical analysis
Mathematical models
Polynomials
Stability
State vectors
Strategy
Takagi–Sugeno fuzzy system
title Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20stability%20conditions%20for%20discrete-time%20T%E2%80%93S%20fuzzy%20systems:%20A%20Kronecker-product%20approach&rft.jtitle=Information%20sciences&rft.au=Chen,%20Jun&rft.date=2016-04-10&rft.volume=337-338&rft.spage=72&rft.epage=81&rft.pages=72-81&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2015.12.027&rft_dat=%3Cproquest_cross%3E1793233248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793233248&rft_id=info:pmid/&rft_els_id=S0020025515009160&rfr_iscdi=true