Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach
This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is pro...
Gespeichert in:
Veröffentlicht in: | Information sciences 2016-04, Vol.337-338, p.72-81 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | Information sciences |
container_volume | 337-338 |
creator | Chen, Jun Xu, Shengyuan Zhang, Baoyong Qi, Zhidong Li, Ze |
description | This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach. |
doi_str_mv | 10.1016/j.ins.2015.12.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793233248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025515009160</els_id><sourcerecordid>1793233248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGweWRKO7cRJYaoqbqKCgbJiuc6JcEnjYjuV2ol34A15ElKVmemc4fvP5SPknEHKgMnLRWrbkHJgecp4Crw4IANWFjyRfMQOyQCAQwI8z4_JSQgLAMgKKQfk7cmtsaEh6rltbNxQ49rKRuvaQGvnaWWD8RgxiXaJdPbz9f1C62673dCwCRGX4YqO6aN3LZoP9MnKu6ozkepV32nzfkqOat0EPPurQ_J6ezOb3CfT57uHyXiaGCEgJrzMQBa1qWrEQtZmzgtpDMpaaynmkAGiGCGUbC6gzExuNDIoc65lT3MsxZBc7Of2az87DFEt-8OxaXSLrguKFSPBheDZDmV71HgXgsdarbxdar9RDNTOpVqo3qXauVSMq95ln7neZ7D_YW3Rq2AstgYr69FEVTn7T_oXix9-_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793233248</pqid></control><display><type>article</type><title>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Jun ; Xu, Shengyuan ; Zhang, Baoyong ; Qi, Zhidong ; Li, Ze</creator><creatorcontrib>Chen, Jun ; Xu, Shengyuan ; Zhang, Baoyong ; Qi, Zhidong ; Li, Ze</creatorcontrib><description>This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2015.12.027</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fuzzy systems ; Homogeneous matrix polynomial ; Kronecker product ; Linear matrix inequality ; Lyapunov functions ; Mathematical analysis ; Mathematical models ; Polynomials ; Stability ; State vectors ; Strategy ; Takagi–Sugeno fuzzy system</subject><ispartof>Information sciences, 2016-04, Vol.337-338, p.72-81</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</citedby><cites>FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025515009160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xu, Shengyuan</creatorcontrib><creatorcontrib>Zhang, Baoyong</creatorcontrib><creatorcontrib>Qi, Zhidong</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><title>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</title><title>Information sciences</title><description>This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.</description><subject>Fuzzy systems</subject><subject>Homogeneous matrix polynomial</subject><subject>Kronecker product</subject><subject>Linear matrix inequality</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Stability</subject><subject>State vectors</subject><subject>Strategy</subject><subject>Takagi–Sugeno fuzzy system</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGweWRKO7cRJYaoqbqKCgbJiuc6JcEnjYjuV2ol34A15ElKVmemc4fvP5SPknEHKgMnLRWrbkHJgecp4Crw4IANWFjyRfMQOyQCAQwI8z4_JSQgLAMgKKQfk7cmtsaEh6rltbNxQ49rKRuvaQGvnaWWD8RgxiXaJdPbz9f1C62673dCwCRGX4YqO6aN3LZoP9MnKu6ozkepV32nzfkqOat0EPPurQ_J6ezOb3CfT57uHyXiaGCEgJrzMQBa1qWrEQtZmzgtpDMpaaynmkAGiGCGUbC6gzExuNDIoc65lT3MsxZBc7Of2az87DFEt-8OxaXSLrguKFSPBheDZDmV71HgXgsdarbxdar9RDNTOpVqo3qXauVSMq95ln7neZ7D_YW3Rq2AstgYr69FEVTn7T_oXix9-_Q</recordid><startdate>20160410</startdate><enddate>20160410</enddate><creator>Chen, Jun</creator><creator>Xu, Shengyuan</creator><creator>Zhang, Baoyong</creator><creator>Qi, Zhidong</creator><creator>Li, Ze</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160410</creationdate><title>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</title><author>Chen, Jun ; Xu, Shengyuan ; Zhang, Baoyong ; Qi, Zhidong ; Li, Ze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-284067fcdfee76fcb276cce6faa63b040ee39e081b3084c5cae10852a676f2e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fuzzy systems</topic><topic>Homogeneous matrix polynomial</topic><topic>Kronecker product</topic><topic>Linear matrix inequality</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Stability</topic><topic>State vectors</topic><topic>Strategy</topic><topic>Takagi–Sugeno fuzzy system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xu, Shengyuan</creatorcontrib><creatorcontrib>Zhang, Baoyong</creatorcontrib><creatorcontrib>Qi, Zhidong</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jun</au><au>Xu, Shengyuan</au><au>Zhang, Baoyong</au><au>Qi, Zhidong</au><au>Li, Ze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach</atitle><jtitle>Information sciences</jtitle><date>2016-04-10</date><risdate>2016</risdate><volume>337-338</volume><spage>72</spage><epage>81</epage><pages>72-81</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper is concerned with the issue of developing a novel strategy to reduce the conservatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike the previous ones which are almost quadratic with respect to the state vector, a new class of Lyapunov functions is proposed which is quadratic with respect to the Kronecker products of the state vector, thus including almost the existing ones found in the literature as special cases. By combining the characterizations of homogeneous matrix polynomials and the properties of membership functions, relaxed stability conditions are derived in the form of linear matrix inequalities which can be efficiently solved by the convex optimization techniques. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2015.12.027</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2016-04, Vol.337-338, p.72-81 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793233248 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Fuzzy systems Homogeneous matrix polynomial Kronecker product Linear matrix inequality Lyapunov functions Mathematical analysis Mathematical models Polynomials Stability State vectors Strategy Takagi–Sugeno fuzzy system |
title | Novel stability conditions for discrete-time T–S fuzzy systems: A Kronecker-product approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20stability%20conditions%20for%20discrete-time%20T%E2%80%93S%20fuzzy%20systems:%20A%20Kronecker-product%20approach&rft.jtitle=Information%20sciences&rft.au=Chen,%20Jun&rft.date=2016-04-10&rft.volume=337-338&rft.spage=72&rft.epage=81&rft.pages=72-81&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2015.12.027&rft_dat=%3Cproquest_cross%3E1793233248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793233248&rft_id=info:pmid/&rft_els_id=S0020025515009160&rfr_iscdi=true |