Rational design of mirror-like peptides with alanine regulation
To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the develo...
Gespeichert in:
Veröffentlicht in: | Amino acids 2016-02, Vol.48 (2), p.403-417 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 2 |
container_start_page | 403 |
container_title | Amino acids |
container_volume | 48 |
creator | Li, Weizhong Tan, Tingting Xu, Wei Xu, Lin Dong, Na Ma, Deying Shan, Anshan |
description | To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the development of AMPs and are not optimal with the requirements needed for the design of AMPs. In this investigation, we designed a mirror-like structure with a lower charge and a higher number of hydrophobic amino acids. The amino acid sequence of the designed mirror-like peptides was XXYXXXYXXXYXX [X represents L (Leu) and/or A (Ala); Y represents K (Lys)]. These mirror-like peptides displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. Hemolysis activity and cytotoxicity, detected by using human red blood cells (hRBCs) and human embryonic kidney cells (HEK293), respectively, demonstrated that the frequency of Ala residues in this structure had a regulatory effect on the high hydrophobic region. In particular, KL₄A₆ showed a greater antimicrobial potency than the other three mirror-like peptides, folded into an α-helical structure, and displayed the highest therapeutic index, suggesting its good cell selectivity. Observations from fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that KL₄A₆ exhibited good membrane penetration potential by inducing membrane blebbing, disruption and lysis. Therefore, generating mirror-like peptides is a promising strategy for designing effective AMPs with regions of high hydrophobicity. |
doi_str_mv | 10.1007/s00726-015-2094-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793228910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793228910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-8f275fac57ab6c4c118af3874faca7fd8bba2ca01b975d27a1c4261c44b5b483</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi3UCpaPH8AFInHh4uIZO_44VQjxUQmpUoGz5WSdrSGbbO1EaP99zWapUA9VLzPSzPO-tuYl5BjYF2BMXaRcUFIGJUVmBF3vkBkIrimCMZ_IjBluqBAl7JH9lJ4ZA9Qgd8keSq5LLvmMfP3hhtB3ri3mPoVFV_RNsQwx9pG24cUXK78aQl4Vr2H4WbjWdaHzRfSLsd0ID8nnxrXJH237AXm8uX68uqP332-_XV3e01oYM1DdoCobV5fKVbIWNYB2DddK5JlTzVxXlcPaMaiMKueoHNQCZS6iKiuh-QE5n2xXsf81-jTYZUi1b_N_fD8mC8pwRG2A_QcqUSoh0GT07C_0uR9jPsaGAqO0VJgpmKg69ilF39hVDEsX1xaYfcvBTjnYnIN9y8Gus-Zk6zxWSz__o3g_fAZwAlJedQsfPzz9D9fTSdS43rpFDMk-PSADyRgrhWbIfwNtP5uv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761978672</pqid></control><display><type>article</type><title>Rational design of mirror-like peptides with alanine regulation</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Li, Weizhong ; Tan, Tingting ; Xu, Wei ; Xu, Lin ; Dong, Na ; Ma, Deying ; Shan, Anshan</creator><creatorcontrib>Li, Weizhong ; Tan, Tingting ; Xu, Wei ; Xu, Lin ; Dong, Na ; Ma, Deying ; Shan, Anshan</creatorcontrib><description>To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the development of AMPs and are not optimal with the requirements needed for the design of AMPs. In this investigation, we designed a mirror-like structure with a lower charge and a higher number of hydrophobic amino acids. The amino acid sequence of the designed mirror-like peptides was XXYXXXYXXXYXX [X represents L (Leu) and/or A (Ala); Y represents K (Lys)]. These mirror-like peptides displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. Hemolysis activity and cytotoxicity, detected by using human red blood cells (hRBCs) and human embryonic kidney cells (HEK293), respectively, demonstrated that the frequency of Ala residues in this structure had a regulatory effect on the high hydrophobic region. In particular, KL₄A₆ showed a greater antimicrobial potency than the other three mirror-like peptides, folded into an α-helical structure, and displayed the highest therapeutic index, suggesting its good cell selectivity. Observations from fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that KL₄A₆ exhibited good membrane penetration potential by inducing membrane blebbing, disruption and lysis. Therefore, generating mirror-like peptides is a promising strategy for designing effective AMPs with regions of high hydrophobicity.</description><identifier>ISSN: 0939-4451</identifier><identifier>EISSN: 1438-2199</identifier><identifier>DOI: 10.1007/s00726-015-2094-y</identifier><identifier>PMID: 26385363</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>alanine ; Alanine - metabolism ; Amino Acid Sequence ; amino acid sequences ; Amino acids ; Analytical Chemistry ; Anti-Bacterial Agents - adverse effects ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - metabolism ; anti-infective properties ; Antiinfectives and antibacterials ; Antimicrobial Cationic Peptides - adverse effects ; Antimicrobial Cationic Peptides - chemical synthesis ; Antimicrobial Cationic Peptides - metabolism ; antimicrobial peptides ; Bacteria ; Biochemical Engineering ; Biochemistry ; Biomedical and Life Sciences ; Cell Line ; Cell Membrane - metabolism ; Cell Membrane Permeability ; Circular Dichroism ; cytotoxicity ; Drug Design ; electron microscopy ; erythrocytes ; Erythrocytes - drug effects ; flow cytometry ; fluorescence emission spectroscopy ; Gram-negative bacteria ; Gram-Negative Bacteria - drug effects ; Gram-Positive Bacteria - drug effects ; HEK293 Cells ; hemolysis ; Hemolysis - drug effects ; Human ; Humans ; Hydrophobic and Hydrophilic Interactions ; hydrophobicity ; kidney cells ; Life Sciences ; Membranes ; Microbial Sensitivity Tests ; Neurobiology ; Original Article ; Peptides ; Protein Structure, Secondary ; Proteomics ; Selectivity ; Strategy</subject><ispartof>Amino acids, 2016-02, Vol.48 (2), p.403-417</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>Springer-Verlag Wien 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-8f275fac57ab6c4c118af3874faca7fd8bba2ca01b975d27a1c4261c44b5b483</citedby><cites>FETCH-LOGICAL-c499t-8f275fac57ab6c4c118af3874faca7fd8bba2ca01b975d27a1c4261c44b5b483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00726-015-2094-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00726-015-2094-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26385363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Weizhong</creatorcontrib><creatorcontrib>Tan, Tingting</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Dong, Na</creatorcontrib><creatorcontrib>Ma, Deying</creatorcontrib><creatorcontrib>Shan, Anshan</creatorcontrib><title>Rational design of mirror-like peptides with alanine regulation</title><title>Amino acids</title><addtitle>Amino Acids</addtitle><addtitle>Amino Acids</addtitle><description>To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the development of AMPs and are not optimal with the requirements needed for the design of AMPs. In this investigation, we designed a mirror-like structure with a lower charge and a higher number of hydrophobic amino acids. The amino acid sequence of the designed mirror-like peptides was XXYXXXYXXXYXX [X represents L (Leu) and/or A (Ala); Y represents K (Lys)]. These mirror-like peptides displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. Hemolysis activity and cytotoxicity, detected by using human red blood cells (hRBCs) and human embryonic kidney cells (HEK293), respectively, demonstrated that the frequency of Ala residues in this structure had a regulatory effect on the high hydrophobic region. In particular, KL₄A₆ showed a greater antimicrobial potency than the other three mirror-like peptides, folded into an α-helical structure, and displayed the highest therapeutic index, suggesting its good cell selectivity. Observations from fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that KL₄A₆ exhibited good membrane penetration potential by inducing membrane blebbing, disruption and lysis. Therefore, generating mirror-like peptides is a promising strategy for designing effective AMPs with regions of high hydrophobicity.</description><subject>alanine</subject><subject>Alanine - metabolism</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Anti-Bacterial Agents - adverse effects</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>anti-infective properties</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial Cationic Peptides - adverse effects</subject><subject>Antimicrobial Cationic Peptides - chemical synthesis</subject><subject>Antimicrobial Cationic Peptides - metabolism</subject><subject>antimicrobial peptides</subject><subject>Bacteria</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Circular Dichroism</subject><subject>cytotoxicity</subject><subject>Drug Design</subject><subject>electron microscopy</subject><subject>erythrocytes</subject><subject>Erythrocytes - drug effects</subject><subject>flow cytometry</subject><subject>fluorescence emission spectroscopy</subject><subject>Gram-negative bacteria</subject><subject>Gram-Negative Bacteria - drug effects</subject><subject>Gram-Positive Bacteria - drug effects</subject><subject>HEK293 Cells</subject><subject>hemolysis</subject><subject>Hemolysis - drug effects</subject><subject>Human</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobicity</subject><subject>kidney cells</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Microbial Sensitivity Tests</subject><subject>Neurobiology</subject><subject>Original Article</subject><subject>Peptides</subject><subject>Protein Structure, Secondary</subject><subject>Proteomics</subject><subject>Selectivity</subject><subject>Strategy</subject><issn>0939-4451</issn><issn>1438-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1P3DAQhi3UCpaPH8AFInHh4uIZO_44VQjxUQmpUoGz5WSdrSGbbO1EaP99zWapUA9VLzPSzPO-tuYl5BjYF2BMXaRcUFIGJUVmBF3vkBkIrimCMZ_IjBluqBAl7JH9lJ4ZA9Qgd8keSq5LLvmMfP3hhtB3ri3mPoVFV_RNsQwx9pG24cUXK78aQl4Vr2H4WbjWdaHzRfSLsd0ID8nnxrXJH237AXm8uX68uqP332-_XV3e01oYM1DdoCobV5fKVbIWNYB2DddK5JlTzVxXlcPaMaiMKueoHNQCZS6iKiuh-QE5n2xXsf81-jTYZUi1b_N_fD8mC8pwRG2A_QcqUSoh0GT07C_0uR9jPsaGAqO0VJgpmKg69ilF39hVDEsX1xaYfcvBTjnYnIN9y8Gus-Zk6zxWSz__o3g_fAZwAlJedQsfPzz9D9fTSdS43rpFDMk-PSADyRgrhWbIfwNtP5uv</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Li, Weizhong</creator><creator>Tan, Tingting</creator><creator>Xu, Wei</creator><creator>Xu, Lin</creator><creator>Dong, Na</creator><creator>Ma, Deying</creator><creator>Shan, Anshan</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Rational design of mirror-like peptides with alanine regulation</title><author>Li, Weizhong ; Tan, Tingting ; Xu, Wei ; Xu, Lin ; Dong, Na ; Ma, Deying ; Shan, Anshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-8f275fac57ab6c4c118af3874faca7fd8bba2ca01b975d27a1c4261c44b5b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>alanine</topic><topic>Alanine - metabolism</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Anti-Bacterial Agents - adverse effects</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>anti-infective properties</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial Cationic Peptides - adverse effects</topic><topic>Antimicrobial Cationic Peptides - chemical synthesis</topic><topic>Antimicrobial Cationic Peptides - metabolism</topic><topic>antimicrobial peptides</topic><topic>Bacteria</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Circular Dichroism</topic><topic>cytotoxicity</topic><topic>Drug Design</topic><topic>electron microscopy</topic><topic>erythrocytes</topic><topic>Erythrocytes - drug effects</topic><topic>flow cytometry</topic><topic>fluorescence emission spectroscopy</topic><topic>Gram-negative bacteria</topic><topic>Gram-Negative Bacteria - drug effects</topic><topic>Gram-Positive Bacteria - drug effects</topic><topic>HEK293 Cells</topic><topic>hemolysis</topic><topic>Hemolysis - drug effects</topic><topic>Human</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobicity</topic><topic>kidney cells</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Microbial Sensitivity Tests</topic><topic>Neurobiology</topic><topic>Original Article</topic><topic>Peptides</topic><topic>Protein Structure, Secondary</topic><topic>Proteomics</topic><topic>Selectivity</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weizhong</creatorcontrib><creatorcontrib>Tan, Tingting</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Dong, Na</creatorcontrib><creatorcontrib>Ma, Deying</creatorcontrib><creatorcontrib>Shan, Anshan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Amino acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weizhong</au><au>Tan, Tingting</au><au>Xu, Wei</au><au>Xu, Lin</au><au>Dong, Na</au><au>Ma, Deying</au><au>Shan, Anshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of mirror-like peptides with alanine regulation</atitle><jtitle>Amino acids</jtitle><stitle>Amino Acids</stitle><addtitle>Amino Acids</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>48</volume><issue>2</issue><spage>403</spage><epage>417</epage><pages>403-417</pages><issn>0939-4451</issn><eissn>1438-2199</eissn><abstract>To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the development of AMPs and are not optimal with the requirements needed for the design of AMPs. In this investigation, we designed a mirror-like structure with a lower charge and a higher number of hydrophobic amino acids. The amino acid sequence of the designed mirror-like peptides was XXYXXXYXXXYXX [X represents L (Leu) and/or A (Ala); Y represents K (Lys)]. These mirror-like peptides displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. Hemolysis activity and cytotoxicity, detected by using human red blood cells (hRBCs) and human embryonic kidney cells (HEK293), respectively, demonstrated that the frequency of Ala residues in this structure had a regulatory effect on the high hydrophobic region. In particular, KL₄A₆ showed a greater antimicrobial potency than the other three mirror-like peptides, folded into an α-helical structure, and displayed the highest therapeutic index, suggesting its good cell selectivity. Observations from fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that KL₄A₆ exhibited good membrane penetration potential by inducing membrane blebbing, disruption and lysis. Therefore, generating mirror-like peptides is a promising strategy for designing effective AMPs with regions of high hydrophobicity.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>26385363</pmid><doi>10.1007/s00726-015-2094-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-4451 |
ispartof | Amino acids, 2016-02, Vol.48 (2), p.403-417 |
issn | 0939-4451 1438-2199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793228910 |
source | MEDLINE; SpringerLink (Online service) |
subjects | alanine Alanine - metabolism Amino Acid Sequence amino acid sequences Amino acids Analytical Chemistry Anti-Bacterial Agents - adverse effects Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - metabolism anti-infective properties Antiinfectives and antibacterials Antimicrobial Cationic Peptides - adverse effects Antimicrobial Cationic Peptides - chemical synthesis Antimicrobial Cationic Peptides - metabolism antimicrobial peptides Bacteria Biochemical Engineering Biochemistry Biomedical and Life Sciences Cell Line Cell Membrane - metabolism Cell Membrane Permeability Circular Dichroism cytotoxicity Drug Design electron microscopy erythrocytes Erythrocytes - drug effects flow cytometry fluorescence emission spectroscopy Gram-negative bacteria Gram-Negative Bacteria - drug effects Gram-Positive Bacteria - drug effects HEK293 Cells hemolysis Hemolysis - drug effects Human Humans Hydrophobic and Hydrophilic Interactions hydrophobicity kidney cells Life Sciences Membranes Microbial Sensitivity Tests Neurobiology Original Article Peptides Protein Structure, Secondary Proteomics Selectivity Strategy |
title | Rational design of mirror-like peptides with alanine regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20mirror-like%20peptides%20with%20alanine%20regulation&rft.jtitle=Amino%20acids&rft.au=Li,%20Weizhong&rft.date=2016-02-01&rft.volume=48&rft.issue=2&rft.spage=403&rft.epage=417&rft.pages=403-417&rft.issn=0939-4451&rft.eissn=1438-2199&rft_id=info:doi/10.1007/s00726-015-2094-y&rft_dat=%3Cproquest_cross%3E1793228910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761978672&rft_id=info:pmid/26385363&rfr_iscdi=true |