Spatial distribution of grain yield based on different sample scales and partitioning schemes and its error correction

Spatialization of grain yield can contribute to comprehensive analysis of grain yield with other natural and cultural data. Grain production has a close relationship with the distribution of farmland. Therefore, information on spatial distribution of farmland is an important parameter for spatializa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nong ye gong cheng xue bao 2015-08, Vol.31 (15), p.272-278
Hauptverfasser: Ji, Guangxing, Liao, Shunbao, Yue, Yanlin, Hou, Pengmin, Yang, Xu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 15
container_start_page 272
container_title Nong ye gong cheng xue bao
container_volume 31
creator Ji, Guangxing
Liao, Shunbao
Yue, Yanlin
Hou, Pengmin
Yang, Xu
description Spatialization of grain yield can contribute to comprehensive analysis of grain yield with other natural and cultural data. Grain production has a close relationship with the distribution of farmland. Therefore, information on spatial distribution of farmland is an important parameter for spatialization of grain yield, and the statistical analysis and modeling are the basic means to realize spatialization of grain yield. Spatialization of nationwide grain yield relates to sample scales and partitioning schemes. Different sample scales and partitioning schemes will inevitably lead to different errors of spatialization. In this paper, models considering farmland distribution and sample scales and partition schemes were proposed to estimate grain yield and its spatial distribution. The grain yield data were collected from 2005 Yellow Book of China. Data of paddy field, irrigated land, and dry land areas in each county or district were calculated. This research made up for the deficiency of spatial error analysis
doi_str_mv 10.11975/j.issn.1002-6819.2015.15.037
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793228703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793228703</sourcerecordid><originalsourceid>FETCH-LOGICAL-p103t-96b58f78b3091f043615d3dccbaf5574713e037104f8860fd6955de801df8f163</originalsourceid><addsrcrecordid>eNo9j81qwzAQhHVooSHNO-hS6MXurmVZ8rGE_kGgh7bnIFurVMWRXUkp9O3r0BAYGPhmdmEYu0EoEVsl775Kn1IoEaAqGo1tWQHKchYIdcEWZ37FVin5DiQKBVDjgv28TSZ7M3DrU46-O2Q_Bj46vovGB_7rabC8M4ksn7n1zlGkkHky-2kgnnozUOImWD6ZmP3x2ofdzD9pfwp8TpxiHCPvxxipP3au2aUzQ6LVyZfs4_Hhff1cbF6fXtb3m2JCELlom05qp3QnoEUHtWhQWmH7vjNOSlUrFDRPRKid1g0427RSWtKA1mmHjViy2_-_Uxy_D5Tydu9TT8NgAo2HtEXViqrSCoT4AxWAY78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793228703</pqid></control><display><type>article</type><title>Spatial distribution of grain yield based on different sample scales and partitioning schemes and its error correction</title><source>IngentaConnect Free/Open Access Journals</source><creator>Ji, Guangxing ; Liao, Shunbao ; Yue, Yanlin ; Hou, Pengmin ; Yang, Xu</creator><creatorcontrib>Ji, Guangxing ; Liao, Shunbao ; Yue, Yanlin ; Hou, Pengmin ; Yang, Xu</creatorcontrib><description>Spatialization of grain yield can contribute to comprehensive analysis of grain yield with other natural and cultural data. Grain production has a close relationship with the distribution of farmland. Therefore, information on spatial distribution of farmland is an important parameter for spatialization of grain yield, and the statistical analysis and modeling are the basic means to realize spatialization of grain yield. Spatialization of nationwide grain yield relates to sample scales and partitioning schemes. Different sample scales and partitioning schemes will inevitably lead to different errors of spatialization. In this paper, models considering farmland distribution and sample scales and partition schemes were proposed to estimate grain yield and its spatial distribution. The grain yield data were collected from 2005 Yellow Book of China. Data of paddy field, irrigated land, and dry land areas in each county or district were calculated. This research made up for the deficiency of spatial error analysis</description><identifier>ISSN: 1002-6819</identifier><identifier>DOI: 10.11975/j.issn.1002-6819.2015.15.037</identifier><language>chi</language><subject>Error analysis ; Farmlands ; Grains ; Partitioning ; Samples ; Spatial distribution ; Statistical analysis ; Statistical methods</subject><ispartof>Nong ye gong cheng xue bao, 2015-08, Vol.31 (15), p.272-278</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Ji, Guangxing</creatorcontrib><creatorcontrib>Liao, Shunbao</creatorcontrib><creatorcontrib>Yue, Yanlin</creatorcontrib><creatorcontrib>Hou, Pengmin</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><title>Spatial distribution of grain yield based on different sample scales and partitioning schemes and its error correction</title><title>Nong ye gong cheng xue bao</title><description>Spatialization of grain yield can contribute to comprehensive analysis of grain yield with other natural and cultural data. Grain production has a close relationship with the distribution of farmland. Therefore, information on spatial distribution of farmland is an important parameter for spatialization of grain yield, and the statistical analysis and modeling are the basic means to realize spatialization of grain yield. Spatialization of nationwide grain yield relates to sample scales and partitioning schemes. Different sample scales and partitioning schemes will inevitably lead to different errors of spatialization. In this paper, models considering farmland distribution and sample scales and partition schemes were proposed to estimate grain yield and its spatial distribution. The grain yield data were collected from 2005 Yellow Book of China. Data of paddy field, irrigated land, and dry land areas in each county or district were calculated. This research made up for the deficiency of spatial error analysis</description><subject>Error analysis</subject><subject>Farmlands</subject><subject>Grains</subject><subject>Partitioning</subject><subject>Samples</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1002-6819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j81qwzAQhHVooSHNO-hS6MXurmVZ8rGE_kGgh7bnIFurVMWRXUkp9O3r0BAYGPhmdmEYu0EoEVsl775Kn1IoEaAqGo1tWQHKchYIdcEWZ37FVin5DiQKBVDjgv28TSZ7M3DrU46-O2Q_Bj46vovGB_7rabC8M4ksn7n1zlGkkHky-2kgnnozUOImWD6ZmP3x2ofdzD9pfwp8TpxiHCPvxxipP3au2aUzQ6LVyZfs4_Hhff1cbF6fXtb3m2JCELlom05qp3QnoEUHtWhQWmH7vjNOSlUrFDRPRKid1g0427RSWtKA1mmHjViy2_-_Uxy_D5Tydu9TT8NgAo2HtEXViqrSCoT4AxWAY78</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Ji, Guangxing</creator><creator>Liao, Shunbao</creator><creator>Yue, Yanlin</creator><creator>Hou, Pengmin</creator><creator>Yang, Xu</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>Spatial distribution of grain yield based on different sample scales and partitioning schemes and its error correction</title><author>Ji, Guangxing ; Liao, Shunbao ; Yue, Yanlin ; Hou, Pengmin ; Yang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p103t-96b58f78b3091f043615d3dccbaf5574713e037104f8860fd6955de801df8f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2015</creationdate><topic>Error analysis</topic><topic>Farmlands</topic><topic>Grains</topic><topic>Partitioning</topic><topic>Samples</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ji, Guangxing</creatorcontrib><creatorcontrib>Liao, Shunbao</creatorcontrib><creatorcontrib>Yue, Yanlin</creatorcontrib><creatorcontrib>Hou, Pengmin</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Nong ye gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Guangxing</au><au>Liao, Shunbao</au><au>Yue, Yanlin</au><au>Hou, Pengmin</au><au>Yang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial distribution of grain yield based on different sample scales and partitioning schemes and its error correction</atitle><jtitle>Nong ye gong cheng xue bao</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>31</volume><issue>15</issue><spage>272</spage><epage>278</epage><pages>272-278</pages><issn>1002-6819</issn><abstract>Spatialization of grain yield can contribute to comprehensive analysis of grain yield with other natural and cultural data. Grain production has a close relationship with the distribution of farmland. Therefore, information on spatial distribution of farmland is an important parameter for spatialization of grain yield, and the statistical analysis and modeling are the basic means to realize spatialization of grain yield. Spatialization of nationwide grain yield relates to sample scales and partitioning schemes. Different sample scales and partitioning schemes will inevitably lead to different errors of spatialization. In this paper, models considering farmland distribution and sample scales and partition schemes were proposed to estimate grain yield and its spatial distribution. The grain yield data were collected from 2005 Yellow Book of China. Data of paddy field, irrigated land, and dry land areas in each county or district were calculated. This research made up for the deficiency of spatial error analysis</abstract><doi>10.11975/j.issn.1002-6819.2015.15.037</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1002-6819
ispartof Nong ye gong cheng xue bao, 2015-08, Vol.31 (15), p.272-278
issn 1002-6819
language chi
recordid cdi_proquest_miscellaneous_1793228703
source IngentaConnect Free/Open Access Journals
subjects Error analysis
Farmlands
Grains
Partitioning
Samples
Spatial distribution
Statistical analysis
Statistical methods
title Spatial distribution of grain yield based on different sample scales and partitioning schemes and its error correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20distribution%20of%20grain%20yield%20based%20on%20different%20sample%20scales%20and%20partitioning%20schemes%20and%20its%20error%20correction&rft.jtitle=Nong%20ye%20gong%20cheng%20xue%20bao&rft.au=Ji,%20Guangxing&rft.date=2015-08-01&rft.volume=31&rft.issue=15&rft.spage=272&rft.epage=278&rft.pages=272-278&rft.issn=1002-6819&rft_id=info:doi/10.11975/j.issn.1002-6819.2015.15.037&rft_dat=%3Cproquest%3E1793228703%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793228703&rft_id=info:pmid/&rfr_iscdi=true