Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework
When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure. A fundamental information needed to this aim is the minimum number of parameters required to describe the data while minimizing the information loss. This number, usually called...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-21 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2015 |
creator | Rozza, A. Ceruti, C. Casiraghi, E. Campadelli, P. |
description | When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure. A fundamental information needed to this aim is the minimum number of parameters required to describe the data while minimizing the information loss. This number, usually called intrinsic dimension, can be interpreted as the dimension of the manifold from which the input data are supposed to be drawn. Due to its usefulness in many theoretical and practical problems, in the last decades the concept of intrinsic dimension has gained considerable attention in the scientific community, motivating the large number of intrinsic dimensionality estimators proposed in the literature. However, the problem is still open since most techniques cannot efficiently deal with datasets drawn from manifolds of high intrinsic dimension and nonlinearly embedded in higher dimensional spaces. This paper surveys some of the most interesting, widespread used, and advanced state-of-the-art methodologies. Unfortunately, since no benchmark database exists in this research field, an objective comparison among different techniques is not possible. Consequently, we suggest a benchmark framework and apply it to comparatively evaluate relevant state-of-the-art estimators. |
doi_str_mv | 10.1155/2015/759567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793226471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793226471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1dbc86417d3ed02fa4b7b0d7fbae12195a18e459ae61906370dc206ba08b91233</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAiCs7pybsUvIhSl5c0SetN56aDiSATvJU0fWXd2lSTzuF_b0Y9iBdP7zv8eLz3BcEpkGsAzkeUAB9JnnIh94IBcMEiDrHc95nQOALK3g6DI-dWhFDgkAyCp5npbGVcpcP7qkEfWhNOXFc1qvPxJnzBGj-V6cIF6qWpPjboQmWKUIV3aPSyUXYdTq1qcNva9XFwUKra4cnPHAav08li_BjNnx9m49t5pFmSdhEUuU5EDLJgWBBaqjiXOSlkmSsECilXkGDMU4UCUiKYJIWmROSKJHnqn2DD4KLf-27b3UVd1lROY10rg-3GZSBTRqmIJXh6_oeu2o01_jqvaCIIZYJ7ddUrbVvnLJbZu_UV2K8MSLarNttVm_XVen3Z62VlCrWt_sFnPUZPsFS_sIyFIOwb0pWBCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728602365</pqid></control><display><type>article</type><title>Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Rozza, A. ; Ceruti, C. ; Casiraghi, E. ; Campadelli, P.</creator><contributor>Lee, Sangmin</contributor><creatorcontrib>Rozza, A. ; Ceruti, C. ; Casiraghi, E. ; Campadelli, P. ; Lee, Sangmin</creatorcontrib><description>When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure. A fundamental information needed to this aim is the minimum number of parameters required to describe the data while minimizing the information loss. This number, usually called intrinsic dimension, can be interpreted as the dimension of the manifold from which the input data are supposed to be drawn. Due to its usefulness in many theoretical and practical problems, in the last decades the concept of intrinsic dimension has gained considerable attention in the scientific community, motivating the large number of intrinsic dimensionality estimators proposed in the literature. However, the problem is still open since most techniques cannot efficiently deal with datasets drawn from manifolds of high intrinsic dimension and nonlinearly embedded in higher dimensional spaces. This paper surveys some of the most interesting, widespread used, and advanced state-of-the-art methodologies. Unfortunately, since no benchmark database exists in this research field, an objective comparison among different techniques is not possible. Consequently, we suggest a benchmark framework and apply it to comparatively evaluate relevant state-of-the-art estimators.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/759567</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Benchmarking ; Benchmarks ; Communities ; Data structures ; Datasets ; Dealing ; Engineering ; Estimators ; Fractals ; Manifolds (mathematics) ; Mathematical analysis ; Pattern recognition ; State of the art ; State-of-the-art reviews ; Time series</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-21</ispartof><rights>Copyright © 2015 P. Campadelli et al.</rights><rights>Copyright © 2015 P. Campadelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1dbc86417d3ed02fa4b7b0d7fbae12195a18e459ae61906370dc206ba08b91233</citedby><cites>FETCH-LOGICAL-c389t-1dbc86417d3ed02fa4b7b0d7fbae12195a18e459ae61906370dc206ba08b91233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Lee, Sangmin</contributor><creatorcontrib>Rozza, A.</creatorcontrib><creatorcontrib>Ceruti, C.</creatorcontrib><creatorcontrib>Casiraghi, E.</creatorcontrib><creatorcontrib>Campadelli, P.</creatorcontrib><title>Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework</title><title>Mathematical problems in engineering</title><description>When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure. A fundamental information needed to this aim is the minimum number of parameters required to describe the data while minimizing the information loss. This number, usually called intrinsic dimension, can be interpreted as the dimension of the manifold from which the input data are supposed to be drawn. Due to its usefulness in many theoretical and practical problems, in the last decades the concept of intrinsic dimension has gained considerable attention in the scientific community, motivating the large number of intrinsic dimensionality estimators proposed in the literature. However, the problem is still open since most techniques cannot efficiently deal with datasets drawn from manifolds of high intrinsic dimension and nonlinearly embedded in higher dimensional spaces. This paper surveys some of the most interesting, widespread used, and advanced state-of-the-art methodologies. Unfortunately, since no benchmark database exists in this research field, an objective comparison among different techniques is not possible. Consequently, we suggest a benchmark framework and apply it to comparatively evaluate relevant state-of-the-art estimators.</description><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Communities</subject><subject>Data structures</subject><subject>Datasets</subject><subject>Dealing</subject><subject>Engineering</subject><subject>Estimators</subject><subject>Fractals</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>State of the art</subject><subject>State-of-the-art reviews</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MFLwzAUBvAiCs7pybsUvIhSl5c0SetN56aDiSATvJU0fWXd2lSTzuF_b0Y9iBdP7zv8eLz3BcEpkGsAzkeUAB9JnnIh94IBcMEiDrHc95nQOALK3g6DI-dWhFDgkAyCp5npbGVcpcP7qkEfWhNOXFc1qvPxJnzBGj-V6cIF6qWpPjboQmWKUIV3aPSyUXYdTq1qcNva9XFwUKra4cnPHAav08li_BjNnx9m49t5pFmSdhEUuU5EDLJgWBBaqjiXOSlkmSsECilXkGDMU4UCUiKYJIWmROSKJHnqn2DD4KLf-27b3UVd1lROY10rg-3GZSBTRqmIJXh6_oeu2o01_jqvaCIIZYJ7ddUrbVvnLJbZu_UV2K8MSLarNttVm_XVen3Z62VlCrWt_sFnPUZPsFS_sIyFIOwb0pWBCA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Rozza, A.</creator><creator>Ceruti, C.</creator><creator>Casiraghi, E.</creator><creator>Campadelli, P.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework</title><author>Rozza, A. ; Ceruti, C. ; Casiraghi, E. ; Campadelli, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1dbc86417d3ed02fa4b7b0d7fbae12195a18e459ae61906370dc206ba08b91233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Communities</topic><topic>Data structures</topic><topic>Datasets</topic><topic>Dealing</topic><topic>Engineering</topic><topic>Estimators</topic><topic>Fractals</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>State of the art</topic><topic>State-of-the-art reviews</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozza, A.</creatorcontrib><creatorcontrib>Ceruti, C.</creatorcontrib><creatorcontrib>Casiraghi, E.</creatorcontrib><creatorcontrib>Campadelli, P.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozza, A.</au><au>Ceruti, C.</au><au>Casiraghi, E.</au><au>Campadelli, P.</au><au>Lee, Sangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure. A fundamental information needed to this aim is the minimum number of parameters required to describe the data while minimizing the information loss. This number, usually called intrinsic dimension, can be interpreted as the dimension of the manifold from which the input data are supposed to be drawn. Due to its usefulness in many theoretical and practical problems, in the last decades the concept of intrinsic dimension has gained considerable attention in the scientific community, motivating the large number of intrinsic dimensionality estimators proposed in the literature. However, the problem is still open since most techniques cannot efficiently deal with datasets drawn from manifolds of high intrinsic dimension and nonlinearly embedded in higher dimensional spaces. This paper surveys some of the most interesting, widespread used, and advanced state-of-the-art methodologies. Unfortunately, since no benchmark database exists in this research field, an objective comparison among different techniques is not possible. Consequently, we suggest a benchmark framework and apply it to comparatively evaluate relevant state-of-the-art estimators.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/759567</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-21 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793226471 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Benchmarking Benchmarks Communities Data structures Datasets Dealing Engineering Estimators Fractals Manifolds (mathematics) Mathematical analysis Pattern recognition State of the art State-of-the-art reviews Time series |
title | Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Dimension%20Estimation:%20Relevant%20Techniques%20and%20a%20Benchmark%20Framework&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Rozza,%20A.&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/759567&rft_dat=%3Cproquest_cross%3E1793226471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728602365&rft_id=info:pmid/&rfr_iscdi=true |