Dynamic patterns of compaction in brittle porous media
When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs. Brittle porous media exhibit a variety of irreversible...
Gespeichert in:
Veröffentlicht in: | Nature physics 2015-10, Vol.11 (10), p.835-838 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 838 |
---|---|
container_issue | 10 |
container_start_page | 835 |
container_title | Nature physics |
container_volume | 11 |
creator | Guillard, François Golshan, Pouya Shen, Luming Valdes, Julio R. Einav, Itai |
description | When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs.
Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks
1
,
2
,
3
, foams
4
, cereal packs
5
and snow
6
. We have recently found moving compaction bands in cereal packs
5
; similar bands have been detected in snow
6
. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation. |
doi_str_mv | 10.1038/nphys3424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793225201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793225201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</originalsourceid><addsrcrecordid>eNpl0MtKAzEUBuAgCtbqwjcYcKPC6MllcllKvULBja6HNJPRlJlkTNJF38Zn8cmcUimiq3MWHz8_P0KnGK4wUHnth_d1ooywPTTBglUlYRLv735BD9FRSksARjimEyRu1173zhSDztlGn4rQFib0gzbZBV84Xyyiy7mzxRBiWKWvz942Th-jg1Z3yZ783Cl6vb97mT2W8-eHp9nNvDRM8VxitlAMGt5WVhFhZAucaaugUo2kghMFREthFGPUguBaabPQjREcGikqqegUnW9zhxg-VjblunfJ2K7T3o5taiwUJaQigEd69ocuwyr6sd2osAQJrNqoi60yMaQUbVsP0fU6rmsM9WbCejfhaC-3No3Gv9n4K_Ef_gb5WHIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718080451</pqid></control><display><type>article</type><title>Dynamic patterns of compaction in brittle porous media</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guillard, François ; Golshan, Pouya ; Shen, Luming ; Valdes, Julio R. ; Einav, Itai</creator><creatorcontrib>Guillard, François ; Golshan, Pouya ; Shen, Luming ; Valdes, Julio R. ; Einav, Itai</creatorcontrib><description>When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs.
Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks
1
,
2
,
3
, foams
4
, cereal packs
5
and snow
6
. We have recently found moving compaction bands in cereal packs
5
; similar bands have been detected in snow
6
. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3424</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/1029 ; 639/766/119/1002 ; 639/766/119/2795 ; Atomic ; Bands ; Brittleness ; Cereals ; Classical and Continuum Physics ; Compaction ; Complex Systems ; Condensed Matter Physics ; Densification ; letter ; Mathematical and Computational Physics ; Mathematical models ; Media ; Molecular ; Optical and Plasma Physics ; Particle physics ; Physics ; Porous materials ; Porous media ; Snow ; Theoretical</subject><ispartof>Nature physics, 2015-10, Vol.11 (10), p.835-838</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</citedby><cites>FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3424$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3424$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Guillard, François</creatorcontrib><creatorcontrib>Golshan, Pouya</creatorcontrib><creatorcontrib>Shen, Luming</creatorcontrib><creatorcontrib>Valdes, Julio R.</creatorcontrib><creatorcontrib>Einav, Itai</creatorcontrib><title>Dynamic patterns of compaction in brittle porous media</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs.
Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks
1
,
2
,
3
, foams
4
, cereal packs
5
and snow
6
. We have recently found moving compaction bands in cereal packs
5
; similar bands have been detected in snow
6
. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.</description><subject>639/301/923/1029</subject><subject>639/766/119/1002</subject><subject>639/766/119/2795</subject><subject>Atomic</subject><subject>Bands</subject><subject>Brittleness</subject><subject>Cereals</subject><subject>Classical and Continuum Physics</subject><subject>Compaction</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Densification</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Snow</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0MtKAzEUBuAgCtbqwjcYcKPC6MllcllKvULBja6HNJPRlJlkTNJF38Zn8cmcUimiq3MWHz8_P0KnGK4wUHnth_d1ooywPTTBglUlYRLv735BD9FRSksARjimEyRu1173zhSDztlGn4rQFib0gzbZBV84Xyyiy7mzxRBiWKWvz942Th-jg1Z3yZ783Cl6vb97mT2W8-eHp9nNvDRM8VxitlAMGt5WVhFhZAucaaugUo2kghMFREthFGPUguBaabPQjREcGikqqegUnW9zhxg-VjblunfJ2K7T3o5taiwUJaQigEd69ocuwyr6sd2osAQJrNqoi60yMaQUbVsP0fU6rmsM9WbCejfhaC-3No3Gv9n4K_Ef_gb5WHIl</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Guillard, François</creator><creator>Golshan, Pouya</creator><creator>Shen, Luming</creator><creator>Valdes, Julio R.</creator><creator>Einav, Itai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>Dynamic patterns of compaction in brittle porous media</title><author>Guillard, François ; Golshan, Pouya ; Shen, Luming ; Valdes, Julio R. ; Einav, Itai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/923/1029</topic><topic>639/766/119/1002</topic><topic>639/766/119/2795</topic><topic>Atomic</topic><topic>Bands</topic><topic>Brittleness</topic><topic>Cereals</topic><topic>Classical and Continuum Physics</topic><topic>Compaction</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Densification</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Snow</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillard, François</creatorcontrib><creatorcontrib>Golshan, Pouya</creatorcontrib><creatorcontrib>Shen, Luming</creatorcontrib><creatorcontrib>Valdes, Julio R.</creatorcontrib><creatorcontrib>Einav, Itai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillard, François</au><au>Golshan, Pouya</au><au>Shen, Luming</au><au>Valdes, Julio R.</au><au>Einav, Itai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic patterns of compaction in brittle porous media</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>835</spage><epage>838</epage><pages>835-838</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs.
Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks
1
,
2
,
3
, foams
4
, cereal packs
5
and snow
6
. We have recently found moving compaction bands in cereal packs
5
; similar bands have been detected in snow
6
. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3424</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2015-10, Vol.11 (10), p.835-838 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793225201 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/923/1029 639/766/119/1002 639/766/119/2795 Atomic Bands Brittleness Cereals Classical and Continuum Physics Compaction Complex Systems Condensed Matter Physics Densification letter Mathematical and Computational Physics Mathematical models Media Molecular Optical and Plasma Physics Particle physics Physics Porous materials Porous media Snow Theoretical |
title | Dynamic patterns of compaction in brittle porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20patterns%20of%20compaction%20in%20brittle%20porous%C2%A0media&rft.jtitle=Nature%20physics&rft.au=Guillard,%20Fran%C3%A7ois&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=835&rft.epage=838&rft.pages=835-838&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3424&rft_dat=%3Cproquest_cross%3E1793225201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718080451&rft_id=info:pmid/&rfr_iscdi=true |