Dynamic patterns of compaction in brittle porous media

When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs. Brittle porous media exhibit a variety of irreversible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2015-10, Vol.11 (10), p.835-838
Hauptverfasser: Guillard, François, Golshan, Pouya, Shen, Luming, Valdes, Julio R., Einav, Itai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 10
container_start_page 835
container_title Nature physics
container_volume 11
creator Guillard, François
Golshan, Pouya
Shen, Luming
Valdes, Julio R.
Einav, Itai
description When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs. Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks 1 , 2 , 3 , foams 4 , cereal packs 5 and snow 6 . We have recently found moving compaction bands in cereal packs 5 ; similar bands have been detected in snow 6 . However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.
doi_str_mv 10.1038/nphys3424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793225201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793225201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</originalsourceid><addsrcrecordid>eNpl0MtKAzEUBuAgCtbqwjcYcKPC6MllcllKvULBja6HNJPRlJlkTNJF38Zn8cmcUimiq3MWHz8_P0KnGK4wUHnth_d1ooywPTTBglUlYRLv735BD9FRSksARjimEyRu1173zhSDztlGn4rQFib0gzbZBV84Xyyiy7mzxRBiWKWvz942Th-jg1Z3yZ783Cl6vb97mT2W8-eHp9nNvDRM8VxitlAMGt5WVhFhZAucaaugUo2kghMFREthFGPUguBaabPQjREcGikqqegUnW9zhxg-VjblunfJ2K7T3o5taiwUJaQigEd69ocuwyr6sd2osAQJrNqoi60yMaQUbVsP0fU6rmsM9WbCejfhaC-3No3Gv9n4K_Ef_gb5WHIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718080451</pqid></control><display><type>article</type><title>Dynamic patterns of compaction in brittle porous media</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guillard, François ; Golshan, Pouya ; Shen, Luming ; Valdes, Julio R. ; Einav, Itai</creator><creatorcontrib>Guillard, François ; Golshan, Pouya ; Shen, Luming ; Valdes, Julio R. ; Einav, Itai</creatorcontrib><description>When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs. Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks 1 , 2 , 3 , foams 4 , cereal packs 5 and snow 6 . We have recently found moving compaction bands in cereal packs 5 ; similar bands have been detected in snow 6 . However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3424</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/1029 ; 639/766/119/1002 ; 639/766/119/2795 ; Atomic ; Bands ; Brittleness ; Cereals ; Classical and Continuum Physics ; Compaction ; Complex Systems ; Condensed Matter Physics ; Densification ; letter ; Mathematical and Computational Physics ; Mathematical models ; Media ; Molecular ; Optical and Plasma Physics ; Particle physics ; Physics ; Porous materials ; Porous media ; Snow ; Theoretical</subject><ispartof>Nature physics, 2015-10, Vol.11 (10), p.835-838</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</citedby><cites>FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3424$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3424$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Guillard, François</creatorcontrib><creatorcontrib>Golshan, Pouya</creatorcontrib><creatorcontrib>Shen, Luming</creatorcontrib><creatorcontrib>Valdes, Julio R.</creatorcontrib><creatorcontrib>Einav, Itai</creatorcontrib><title>Dynamic patterns of compaction in brittle porous media</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs. Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks 1 , 2 , 3 , foams 4 , cereal packs 5 and snow 6 . We have recently found moving compaction bands in cereal packs 5 ; similar bands have been detected in snow 6 . However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.</description><subject>639/301/923/1029</subject><subject>639/766/119/1002</subject><subject>639/766/119/2795</subject><subject>Atomic</subject><subject>Bands</subject><subject>Brittleness</subject><subject>Cereals</subject><subject>Classical and Continuum Physics</subject><subject>Compaction</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Densification</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Snow</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0MtKAzEUBuAgCtbqwjcYcKPC6MllcllKvULBja6HNJPRlJlkTNJF38Zn8cmcUimiq3MWHz8_P0KnGK4wUHnth_d1ooywPTTBglUlYRLv735BD9FRSksARjimEyRu1173zhSDztlGn4rQFib0gzbZBV84Xyyiy7mzxRBiWKWvz942Th-jg1Z3yZ783Cl6vb97mT2W8-eHp9nNvDRM8VxitlAMGt5WVhFhZAucaaugUo2kghMFREthFGPUguBaabPQjREcGikqqegUnW9zhxg-VjblunfJ2K7T3o5taiwUJaQigEd69ocuwyr6sd2osAQJrNqoi60yMaQUbVsP0fU6rmsM9WbCejfhaC-3No3Gv9n4K_Ef_gb5WHIl</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Guillard, François</creator><creator>Golshan, Pouya</creator><creator>Shen, Luming</creator><creator>Valdes, Julio R.</creator><creator>Einav, Itai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>Dynamic patterns of compaction in brittle porous media</title><author>Guillard, François ; Golshan, Pouya ; Shen, Luming ; Valdes, Julio R. ; Einav, Itai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-14b940d6f5e927c8f064ae9059d83762902a87c9443e076a9acbadc760d875893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/923/1029</topic><topic>639/766/119/1002</topic><topic>639/766/119/2795</topic><topic>Atomic</topic><topic>Bands</topic><topic>Brittleness</topic><topic>Cereals</topic><topic>Classical and Continuum Physics</topic><topic>Compaction</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Densification</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Snow</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillard, François</creatorcontrib><creatorcontrib>Golshan, Pouya</creatorcontrib><creatorcontrib>Shen, Luming</creatorcontrib><creatorcontrib>Valdes, Julio R.</creatorcontrib><creatorcontrib>Einav, Itai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillard, François</au><au>Golshan, Pouya</au><au>Shen, Luming</au><au>Valdes, Julio R.</au><au>Einav, Itai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic patterns of compaction in brittle porous media</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>835</spage><epage>838</epage><pages>835-838</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>When compacting a brittle porous medium—think stepping on fresh snow—patterns develop. Simulations and densification experiments with cereals now provide an understanding of compaction patterns in terms of a lattice model with breakable springs. Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks 1 , 2 , 3 , foams 4 , cereal packs 5 and snow 6 . We have recently found moving compaction bands in cereal packs 5 ; similar bands have been detected in snow 6 . However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3424</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2015-10, Vol.11 (10), p.835-838
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1793225201
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/301/923/1029
639/766/119/1002
639/766/119/2795
Atomic
Bands
Brittleness
Cereals
Classical and Continuum Physics
Compaction
Complex Systems
Condensed Matter Physics
Densification
letter
Mathematical and Computational Physics
Mathematical models
Media
Molecular
Optical and Plasma Physics
Particle physics
Physics
Porous materials
Porous media
Snow
Theoretical
title Dynamic patterns of compaction in brittle porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20patterns%20of%20compaction%20in%20brittle%20porous%C2%A0media&rft.jtitle=Nature%20physics&rft.au=Guillard,%20Fran%C3%A7ois&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=835&rft.epage=838&rft.pages=835-838&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3424&rft_dat=%3Cproquest_cross%3E1793225201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718080451&rft_id=info:pmid/&rfr_iscdi=true