Image denoising using common vector approach

Common vector approach (CVA) is an increasingly popular classification method in recognition problems where probability of having the dimensionality of the problem higher than the number of data items is not zero. In CVA, common component of the members of classes is separated from the discriminatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2015-08, Vol.9 (8), p.709-715
Hauptverfasser: Özkan, Kemal, Seke, Erol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 715
container_issue 8
container_start_page 709
container_title IET image processing
container_volume 9
creator Özkan, Kemal
Seke, Erol
description Common vector approach (CVA) is an increasingly popular classification method in recognition problems where probability of having the dimensionality of the problem higher than the number of data items is not zero. In CVA, common component of the members of classes is separated from the discriminating difference parts and used to determine whether a given vector (a block of data) belongs to the class in question, or to find out the class it belongs to. In this study, overlapping image blocks near the current pixel to be denoised are used as input data and a class is constructed per pixel position. Denoised image block is then constructed with the sum of common vector of the class and difference vector of the centre block denoised by linear minimum mean square error estimation technique. Since the classes are formed using similar blocks, the edges are preserved while denoising the image.
doi_str_mv 10.1049/iet-ipr.2014.0979
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793224162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793224162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5100-94b00dccec5b3ad69a2f15324b4e97e7b23be8f04099b1521960d006be01741a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWKs_wFuOCqbObvaj601Lq4GCIvW8bDabmpJk426j9N-bGBEPol5m5vC888ITBKcIJgiIuCzMNioaN8GAyAQEF3vBCHGKIsEY3_-6qTgMjrzfAFABUzoKLpJKrU2YmdoWvqjXYfsxta0qW4evRm-tC1XTOKv083FwkKvSm5PPPQ6eFvPV7C5a3t8ms-tlpCkCiARJATKtjaZprDImFM4RjTFJiRHc8BTHqZnmQECIFFGMBIMMgKUGECdIxePgbPjb1b60xm9lVXhtylLVxrZeIi5iTDnD_L8oIuJ_KCaI4Q5FA6qd9d6ZXDauqJTbSQSy9y0737LzLXvfsvfdZa6GzFtRmt3fAZk8POKbBWAmoAtHQ7jHNrZ1def317LzH_hkvuq_futosjx-B8NIoSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793224162</pqid></control><display><type>article</type><title>Image denoising using common vector approach</title><source>Wiley-Blackwell Open Access Titles</source><creator>Özkan, Kemal ; Seke, Erol</creator><creatorcontrib>Özkan, Kemal ; Seke, Erol</creatorcontrib><description>Common vector approach (CVA) is an increasingly popular classification method in recognition problems where probability of having the dimensionality of the problem higher than the number of data items is not zero. In CVA, common component of the members of classes is separated from the discriminating difference parts and used to determine whether a given vector (a block of data) belongs to the class in question, or to find out the class it belongs to. In this study, overlapping image blocks near the current pixel to be denoised are used as input data and a class is constructed per pixel position. Denoised image block is then constructed with the sum of common vector of the class and difference vector of the centre block denoised by linear minimum mean square error estimation technique. Since the classes are formed using similar blocks, the edges are preserved while denoising the image.</description><identifier>ISSN: 1751-9659</identifier><identifier>ISSN: 1751-9667</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2014.0979</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Blocking ; Classification ; common vector approach ; Construction ; CVA ; estimation theory ; image classification ; image classification method ; image denoising ; image recognition ; linear minimum mean square error estimation technique ; Mathematical analysis ; mean square error methods ; Noise reduction ; Pixels ; probability ; Review Articles ; vectors ; Vectors (mathematics)</subject><ispartof>IET image processing, 2015-08, Vol.9 (8), p.709-715</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Image Processing published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5100-94b00dccec5b3ad69a2f15324b4e97e7b23be8f04099b1521960d006be01741a3</citedby><cites>FETCH-LOGICAL-c5100-94b00dccec5b3ad69a2f15324b4e97e7b23be8f04099b1521960d006be01741a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2014.0979$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2014.0979$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2014.0979$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Özkan, Kemal</creatorcontrib><creatorcontrib>Seke, Erol</creatorcontrib><title>Image denoising using common vector approach</title><title>IET image processing</title><description>Common vector approach (CVA) is an increasingly popular classification method in recognition problems where probability of having the dimensionality of the problem higher than the number of data items is not zero. In CVA, common component of the members of classes is separated from the discriminating difference parts and used to determine whether a given vector (a block of data) belongs to the class in question, or to find out the class it belongs to. In this study, overlapping image blocks near the current pixel to be denoised are used as input data and a class is constructed per pixel position. Denoised image block is then constructed with the sum of common vector of the class and difference vector of the centre block denoised by linear minimum mean square error estimation technique. Since the classes are formed using similar blocks, the edges are preserved while denoising the image.</description><subject>Blocking</subject><subject>Classification</subject><subject>common vector approach</subject><subject>Construction</subject><subject>CVA</subject><subject>estimation theory</subject><subject>image classification</subject><subject>image classification method</subject><subject>image denoising</subject><subject>image recognition</subject><subject>linear minimum mean square error estimation technique</subject><subject>Mathematical analysis</subject><subject>mean square error methods</subject><subject>Noise reduction</subject><subject>Pixels</subject><subject>probability</subject><subject>Review Articles</subject><subject>vectors</subject><subject>Vectors (mathematics)</subject><issn>1751-9659</issn><issn>1751-9667</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhoMoWKs_wFuOCqbObvaj601Lq4GCIvW8bDabmpJk426j9N-bGBEPol5m5vC888ITBKcIJgiIuCzMNioaN8GAyAQEF3vBCHGKIsEY3_-6qTgMjrzfAFABUzoKLpJKrU2YmdoWvqjXYfsxta0qW4evRm-tC1XTOKv083FwkKvSm5PPPQ6eFvPV7C5a3t8ms-tlpCkCiARJATKtjaZprDImFM4RjTFJiRHc8BTHqZnmQECIFFGMBIMMgKUGECdIxePgbPjb1b60xm9lVXhtylLVxrZeIi5iTDnD_L8oIuJ_KCaI4Q5FA6qd9d6ZXDauqJTbSQSy9y0737LzLXvfsvfdZa6GzFtRmt3fAZk8POKbBWAmoAtHQ7jHNrZ1def317LzH_hkvuq_futosjx-B8NIoSE</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Özkan, Kemal</creator><creator>Seke, Erol</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201508</creationdate><title>Image denoising using common vector approach</title><author>Özkan, Kemal ; Seke, Erol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5100-94b00dccec5b3ad69a2f15324b4e97e7b23be8f04099b1521960d006be01741a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Blocking</topic><topic>Classification</topic><topic>common vector approach</topic><topic>Construction</topic><topic>CVA</topic><topic>estimation theory</topic><topic>image classification</topic><topic>image classification method</topic><topic>image denoising</topic><topic>image recognition</topic><topic>linear minimum mean square error estimation technique</topic><topic>Mathematical analysis</topic><topic>mean square error methods</topic><topic>Noise reduction</topic><topic>Pixels</topic><topic>probability</topic><topic>Review Articles</topic><topic>vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özkan, Kemal</creatorcontrib><creatorcontrib>Seke, Erol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Özkan, Kemal</au><au>Seke, Erol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image denoising using common vector approach</atitle><jtitle>IET image processing</jtitle><date>2015-08</date><risdate>2015</risdate><volume>9</volume><issue>8</issue><spage>709</spage><epage>715</epage><pages>709-715</pages><issn>1751-9659</issn><issn>1751-9667</issn><eissn>1751-9667</eissn><abstract>Common vector approach (CVA) is an increasingly popular classification method in recognition problems where probability of having the dimensionality of the problem higher than the number of data items is not zero. In CVA, common component of the members of classes is separated from the discriminating difference parts and used to determine whether a given vector (a block of data) belongs to the class in question, or to find out the class it belongs to. In this study, overlapping image blocks near the current pixel to be denoised are used as input data and a class is constructed per pixel position. Denoised image block is then constructed with the sum of common vector of the class and difference vector of the centre block denoised by linear minimum mean square error estimation technique. Since the classes are formed using similar blocks, the edges are preserved while denoising the image.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2014.0979</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9659
ispartof IET image processing, 2015-08, Vol.9 (8), p.709-715
issn 1751-9659
1751-9667
1751-9667
language eng
recordid cdi_proquest_miscellaneous_1793224162
source Wiley-Blackwell Open Access Titles
subjects Blocking
Classification
common vector approach
Construction
CVA
estimation theory
image classification
image classification method
image denoising
image recognition
linear minimum mean square error estimation technique
Mathematical analysis
mean square error methods
Noise reduction
Pixels
probability
Review Articles
vectors
Vectors (mathematics)
title Image denoising using common vector approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20denoising%20using%20common%20vector%20approach&rft.jtitle=IET%20image%20processing&rft.au=%C3%96zkan,%20Kemal&rft.date=2015-08&rft.volume=9&rft.issue=8&rft.spage=709&rft.epage=715&rft.pages=709-715&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2014.0979&rft_dat=%3Cproquest_24P%3E1793224162%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793224162&rft_id=info:pmid/&rfr_iscdi=true