Solving a Huff-like Stackelberg location problem on networks
This work deals with a Huff-like Stackelberg problem where the leader wants to locate a facility so that its profit is maximal after the competitor (the follower) has built its facility. We assume that the follower makes a rational decision, maximizing its own profit. The inelastic demand is aggrega...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2016-02, Vol.64 (2), p.233-247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Journal of global optimization |
container_volume | 64 |
creator | G.-Tóth, Boglárka Kovács, Kristóf |
description | This work deals with a Huff-like Stackelberg problem where the leader wants to locate a facility so that its profit is maximal after the competitor (the follower) has built its facility. We assume that the follower makes a rational decision, maximizing its own profit. The inelastic demand is aggregated into the vertices of a graph, and facilities can be located along the edges. For this computationally hard problem we give a Branch and Bound algorithm using interval analysis and DC bounds. Our computational experience shows that the problem can be solved on medium sized networks in reasonable time. |
doi_str_mv | 10.1007/s10898-015-0368-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793223563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718413097</galeid><sourcerecordid>A718413097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-2213e3ab2e6e8074922d67cf19ca3f82d387ce2f1ff0a5e84591e92511cebab23</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhkVoIa7TB-htIZde5Gik1UqCXkJo4oAhB6dnIcsjs7a8cqR1S9--MttDKQQdRgzfP3zwE_IF2AIYU3cFmDaaMpCUiU5TfkVmIJWg3ED3gcyY4ZJKxuCafCplzxgzWvIZ-bZO8Wc_7BrXLM8h0NgfsFmPzh8wbjDvmpi8G_s0NKecNhGPTf0OOP5K-VBuyMfgYsHPf-ec_Hj8_vqwpKuXp-eH-xX1rdQj5RwECrfh2KFmqjWcbzvlAxjvRNB8K7TyyAOEwJxE3UoDWH0BPG5qTMzJ1-ludXg7YxntsS8eY3QDpnOxoIzgXMhOVPT2P3SfznmodpXqoOOKt6pSi4nauYi2H0Ias_P1bfHY-zRg6Ov-XoFuQTBzCcAU8DmVkjHYU-6PLv-2wOylADsVYGsB9lKAvVjzKVMqO-ww_6PybugP4e-GnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761627247</pqid></control><display><type>article</type><title>Solving a Huff-like Stackelberg location problem on networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>G.-Tóth, Boglárka ; Kovács, Kristóf</creator><creatorcontrib>G.-Tóth, Boglárka ; Kovács, Kristóf</creatorcontrib><description>This work deals with a Huff-like Stackelberg problem where the leader wants to locate a facility so that its profit is maximal after the competitor (the follower) has built its facility. We assume that the follower makes a rational decision, maximizing its own profit. The inelastic demand is aggregated into the vertices of a graph, and facilities can be located along the edges. For this computationally hard problem we give a Branch and Bound algorithm using interval analysis and DC bounds. Our computational experience shows that the problem can be solved on medium sized networks in reasonable time.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-015-0368-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Branch & bound algorithms ; Computation ; Computer Science ; Costs ; Design ; Followers ; Graph theory ; Graphs ; Heuristic ; Interval arithmetic ; Intervals ; Market shares ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Networks ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Studies</subject><ispartof>Journal of global optimization, 2016-02, Vol.64 (2), p.233-247</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-2213e3ab2e6e8074922d67cf19ca3f82d387ce2f1ff0a5e84591e92511cebab23</citedby><cites>FETCH-LOGICAL-c458t-2213e3ab2e6e8074922d67cf19ca3f82d387ce2f1ff0a5e84591e92511cebab23</cites><orcidid>0000-0002-0927-111X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-015-0368-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-015-0368-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>G.-Tóth, Boglárka</creatorcontrib><creatorcontrib>Kovács, Kristóf</creatorcontrib><title>Solving a Huff-like Stackelberg location problem on networks</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>This work deals with a Huff-like Stackelberg problem where the leader wants to locate a facility so that its profit is maximal after the competitor (the follower) has built its facility. We assume that the follower makes a rational decision, maximizing its own profit. The inelastic demand is aggregated into the vertices of a graph, and facilities can be located along the edges. For this computationally hard problem we give a Branch and Bound algorithm using interval analysis and DC bounds. Our computational experience shows that the problem can be solved on medium sized networks in reasonable time.</description><subject>Algorithms</subject><subject>Branch & bound algorithms</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Costs</subject><subject>Design</subject><subject>Followers</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic</subject><subject>Interval arithmetic</subject><subject>Intervals</subject><subject>Market shares</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Networks</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFqGzEQhkVoIa7TB-htIZde5Gik1UqCXkJo4oAhB6dnIcsjs7a8cqR1S9--MttDKQQdRgzfP3zwE_IF2AIYU3cFmDaaMpCUiU5TfkVmIJWg3ED3gcyY4ZJKxuCafCplzxgzWvIZ-bZO8Wc_7BrXLM8h0NgfsFmPzh8wbjDvmpi8G_s0NKecNhGPTf0OOP5K-VBuyMfgYsHPf-ec_Hj8_vqwpKuXp-eH-xX1rdQj5RwECrfh2KFmqjWcbzvlAxjvRNB8K7TyyAOEwJxE3UoDWH0BPG5qTMzJ1-ludXg7YxntsS8eY3QDpnOxoIzgXMhOVPT2P3SfznmodpXqoOOKt6pSi4nauYi2H0Ias_P1bfHY-zRg6Ov-XoFuQTBzCcAU8DmVkjHYU-6PLv-2wOylADsVYGsB9lKAvVjzKVMqO-ww_6PybugP4e-GnQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>G.-Tóth, Boglárka</creator><creator>Kovács, Kristóf</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0927-111X</orcidid></search><sort><creationdate>20160201</creationdate><title>Solving a Huff-like Stackelberg location problem on networks</title><author>G.-Tóth, Boglárka ; Kovács, Kristóf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-2213e3ab2e6e8074922d67cf19ca3f82d387ce2f1ff0a5e84591e92511cebab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Branch & bound algorithms</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Costs</topic><topic>Design</topic><topic>Followers</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic</topic><topic>Interval arithmetic</topic><topic>Intervals</topic><topic>Market shares</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Networks</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>G.-Tóth, Boglárka</creatorcontrib><creatorcontrib>Kovács, Kristóf</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G.-Tóth, Boglárka</au><au>Kovács, Kristóf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving a Huff-like Stackelberg location problem on networks</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>64</volume><issue>2</issue><spage>233</spage><epage>247</epage><pages>233-247</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>This work deals with a Huff-like Stackelberg problem where the leader wants to locate a facility so that its profit is maximal after the competitor (the follower) has built its facility. We assume that the follower makes a rational decision, maximizing its own profit. The inelastic demand is aggregated into the vertices of a graph, and facilities can be located along the edges. For this computationally hard problem we give a Branch and Bound algorithm using interval analysis and DC bounds. Our computational experience shows that the problem can be solved on medium sized networks in reasonable time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-015-0368-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0927-111X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2016-02, Vol.64 (2), p.233-247 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793223563 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Branch & bound algorithms Computation Computer Science Costs Design Followers Graph theory Graphs Heuristic Interval arithmetic Intervals Market shares Mathematical analysis Mathematics Mathematics and Statistics Networks Operations Research/Decision Theory Optimization Real Functions Studies |
title | Solving a Huff-like Stackelberg location problem on networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20a%20Huff-like%20Stackelberg%20location%20problem%20on%20networks&rft.jtitle=Journal%20of%20global%20optimization&rft.au=G.-T%C3%B3th,%20Bogl%C3%A1rka&rft.date=2016-02-01&rft.volume=64&rft.issue=2&rft.spage=233&rft.epage=247&rft.pages=233-247&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-015-0368-2&rft_dat=%3Cgale_proqu%3EA718413097%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761627247&rft_id=info:pmid/&rft_galeid=A718413097&rfr_iscdi=true |