All-optical generation of surface plasmons in graphene

The strong confinement of plasmons in graphene makes them interesting for practical applications, but also difficult to excite. An all-optical technique can excite plasmons in graphene over a range of frequencies. Surface plasmons in graphene offer a compelling route to many useful photonic technolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2016-02, Vol.12 (2), p.124-127
Hauptverfasser: Constant, T. J., Hornett, S. M., Chang, D. E., Hendry, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2
container_start_page 124
container_title Nature physics
container_volume 12
creator Constant, T. J.
Hornett, S. M.
Chang, D. E.
Hendry, E.
description The strong confinement of plasmons in graphene makes them interesting for practical applications, but also difficult to excite. An all-optical technique can excite plasmons in graphene over a range of frequencies. Surface plasmons in graphene offer a compelling route to many useful photonic technologies 1 , 2 , 3 . As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability 4 , crystalline stability, large optical nonlinearities 5 and extremely high electromagnetic field concentration 6 . As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light 7 , 8 have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10 −5 .
doi_str_mv 10.1038/nphys3545
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793220712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793220712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1a910eaa7e8193187a3cda8c94ba17d88d3ff5132c344e28f34042dc9de0bcab3</originalsourceid><addsrcrecordid>eNpl0M1KAzEUBeAgCtbqwjcYcKPCaG5upsksi_gHBTe6Hm4zmXbKNBmT6aJv47P4ZEYqRXR17-LjcDiMnQO_AY761vXLbcRCFgdsBEoWuZAaDve_wmN2EuOKcykmgCOmpl2X-35oDXXZwjobaGi9y3yTxU1oyNis7yiuvYtZ6z4_FoH6ZWKn7KihLtqznztmbw_3r3dP-ezl8fluOsuNRD7kQCVwS6SshhJBK0JTkzalnBOoWusam6YAFAaltEI3KFOz2pS15XNDcxyzy11uH_z7xsahWrfR2K4jZ_0mVqBKFIIrEIle_KErvwkutUtqAgpR8CKpq50ywccYbFP1oV1T2FbAq-8Jq_2EyV7vbEzGLWz4lfgPfwGoenMi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761733205</pqid></control><display><type>article</type><title>All-optical generation of surface plasmons in graphene</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Constant, T. J. ; Hornett, S. M. ; Chang, D. E. ; Hendry, E.</creator><creatorcontrib>Constant, T. J. ; Hornett, S. M. ; Chang, D. E. ; Hendry, E.</creatorcontrib><description>The strong confinement of plasmons in graphene makes them interesting for practical applications, but also difficult to excite. An all-optical technique can excite plasmons in graphene over a range of frequencies. Surface plasmons in graphene offer a compelling route to many useful photonic technologies 1 , 2 , 3 . As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability 4 , crystalline stability, large optical nonlinearities 5 and extremely high electromagnetic field concentration 6 . As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light 7 , 8 have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10 −5 .</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3545</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918 ; 639/624/400/1021 ; 639/624/400/385 ; Atomic ; Atoms &amp; subatomic particles ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electromagnetic fields ; Excitation ; Experiments ; Frequency ranges ; Graphene ; letter ; Mathematical and Computational Physics ; Molecular ; Nonlinearity ; Optical and Plasma Physics ; Photonics ; Photons ; Physics ; Plasma physics ; Plasmons ; Surface waves ; Technology ; Theoretical</subject><ispartof>Nature physics, 2016-02, Vol.12 (2), p.124-127</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1a910eaa7e8193187a3cda8c94ba17d88d3ff5132c344e28f34042dc9de0bcab3</citedby><cites>FETCH-LOGICAL-c430t-1a910eaa7e8193187a3cda8c94ba17d88d3ff5132c344e28f34042dc9de0bcab3</cites><orcidid>0000-0002-9555-9696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3545$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3545$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Constant, T. J.</creatorcontrib><creatorcontrib>Hornett, S. M.</creatorcontrib><creatorcontrib>Chang, D. E.</creatorcontrib><creatorcontrib>Hendry, E.</creatorcontrib><title>All-optical generation of surface plasmons in graphene</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The strong confinement of plasmons in graphene makes them interesting for practical applications, but also difficult to excite. An all-optical technique can excite plasmons in graphene over a range of frequencies. Surface plasmons in graphene offer a compelling route to many useful photonic technologies 1 , 2 , 3 . As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability 4 , crystalline stability, large optical nonlinearities 5 and extremely high electromagnetic field concentration 6 . As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light 7 , 8 have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10 −5 .</description><subject>639/301/357/918</subject><subject>639/624/400/1021</subject><subject>639/624/400/385</subject><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electromagnetic fields</subject><subject>Excitation</subject><subject>Experiments</subject><subject>Frequency ranges</subject><subject>Graphene</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinearity</subject><subject>Optical and Plasma Physics</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Plasma physics</subject><subject>Plasmons</subject><subject>Surface waves</subject><subject>Technology</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0M1KAzEUBeAgCtbqwjcYcKPCaG5upsksi_gHBTe6Hm4zmXbKNBmT6aJv47P4ZEYqRXR17-LjcDiMnQO_AY761vXLbcRCFgdsBEoWuZAaDve_wmN2EuOKcykmgCOmpl2X-35oDXXZwjobaGi9y3yTxU1oyNis7yiuvYtZ6z4_FoH6ZWKn7KihLtqznztmbw_3r3dP-ezl8fluOsuNRD7kQCVwS6SshhJBK0JTkzalnBOoWusam6YAFAaltEI3KFOz2pS15XNDcxyzy11uH_z7xsahWrfR2K4jZ_0mVqBKFIIrEIle_KErvwkutUtqAgpR8CKpq50ywccYbFP1oV1T2FbAq-8Jq_2EyV7vbEzGLWz4lfgPfwGoenMi</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Constant, T. J.</creator><creator>Hornett, S. M.</creator><creator>Chang, D. E.</creator><creator>Hendry, E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9555-9696</orcidid></search><sort><creationdate>20160201</creationdate><title>All-optical generation of surface plasmons in graphene</title><author>Constant, T. J. ; Hornett, S. M. ; Chang, D. E. ; Hendry, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1a910eaa7e8193187a3cda8c94ba17d88d3ff5132c344e28f34042dc9de0bcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/357/918</topic><topic>639/624/400/1021</topic><topic>639/624/400/385</topic><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electromagnetic fields</topic><topic>Excitation</topic><topic>Experiments</topic><topic>Frequency ranges</topic><topic>Graphene</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinearity</topic><topic>Optical and Plasma Physics</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Plasma physics</topic><topic>Plasmons</topic><topic>Surface waves</topic><topic>Technology</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constant, T. J.</creatorcontrib><creatorcontrib>Hornett, S. M.</creatorcontrib><creatorcontrib>Chang, D. E.</creatorcontrib><creatorcontrib>Hendry, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constant, T. J.</au><au>Hornett, S. M.</au><au>Chang, D. E.</au><au>Hendry, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-optical generation of surface plasmons in graphene</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>124</spage><epage>127</epage><pages>124-127</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The strong confinement of plasmons in graphene makes them interesting for practical applications, but also difficult to excite. An all-optical technique can excite plasmons in graphene over a range of frequencies. Surface plasmons in graphene offer a compelling route to many useful photonic technologies 1 , 2 , 3 . As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability 4 , crystalline stability, large optical nonlinearities 5 and extremely high electromagnetic field concentration 6 . As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light 7 , 8 have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10 −5 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3545</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9555-9696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2016-02, Vol.12 (2), p.124-127
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1793220712
source SpringerLink Journals; Nature Journals Online
subjects 639/301/357/918
639/624/400/1021
639/624/400/385
Atomic
Atoms & subatomic particles
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electromagnetic fields
Excitation
Experiments
Frequency ranges
Graphene
letter
Mathematical and Computational Physics
Molecular
Nonlinearity
Optical and Plasma Physics
Photonics
Photons
Physics
Plasma physics
Plasmons
Surface waves
Technology
Theoretical
title All-optical generation of surface plasmons in graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-optical%20generation%20of%20surface%20plasmons%20in%C2%A0graphene&rft.jtitle=Nature%20physics&rft.au=Constant,%20T.%20J.&rft.date=2016-02-01&rft.volume=12&rft.issue=2&rft.spage=124&rft.epage=127&rft.pages=124-127&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3545&rft_dat=%3Cproquest_cross%3E1793220712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761733205&rft_id=info:pmid/&rfr_iscdi=true