Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin

Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern pathology 2016-06, Vol.29 (6), p.546-556
Hauptverfasser: Xu, Qinghua, Chen, Jinying, Ni, Shujuan, Tan, Cong, Xu, Midie, Dong, Lei, Yuan, Lin, Wang, Qifeng, Du, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 6
container_start_page 546
container_title Modern pathology
container_volume 29
creator Xu, Qinghua
Chen, Jinying
Ni, Shujuan
Tan, Cong
Xu, Midie
Dong, Lei
Yuan, Lin
Wang, Qifeng
Du, Xiang
description Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an important clinical application of molecular diagnostics. Previous studies have paved the way for gene expression-based tumor type classification. In this study, we have established a comprehensive database integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22 common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of 96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626 primary tumors, of which 97.1% of cases were correctly classified. Furthermore, we tested the signature on a spectrum of diagnostically challenging tumors. An overall accuracy of 92% was achieved on the 1248 tumor specimens that were poorly differentiated, undifferentiated or from metastatic tumors. Thus, we have identified a 154-gene expression signature that can accurately classify a broad spectrum of tumor types. This gene panel may hold a promise to be a useful additional tool for the determination of the tumor origin.
doi_str_mv 10.1038/modpathol.2016.60
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793216296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793216296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b5437e32d11d0f858060818e8a6537672a43c508c99d040833ddec94713fe823</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwyTK2Y8c-oqp8SJXg0HvkOpOtq8QOHgfRf0-WLRVC4jSHed53pHkYey1gL0DZ93MeFl9v87SXIMzewBO2E1pBA9Lqp2wH1qlGOS3P2AuiOwDRaiufszNpnAPXmR2jbz41waeAhdfiE4USl5pn5D756Z4i8YI_0E_EPT9gQo4_l4JEMSdO8ZB8XQvyMW_xW-RxwFTjGIOvRyCPvK7zcReJVuS5xENML9mzcSvEVw_znF1_vLy--Nxcff305eLDVRNaoWtzo1vVoZKDEAOMVlswYIVF641Wnemkb1XQYINzA7RglRoGDK7thBrRSnXO3p1ql5K_r0i1nyMFnCafMK_Ui84pKYx0ZkPf_oPe5bVsD_hNSW210HajxIkKJRMVHPulxNmX-15AfxTSPwrpj0J6A1vmzUPzejPj8Jj4Y2AD5AmgbZUOWP46_d_WXw8qm0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792585158</pqid></control><display><type>article</type><title>Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Xu, Qinghua ; Chen, Jinying ; Ni, Shujuan ; Tan, Cong ; Xu, Midie ; Dong, Lei ; Yuan, Lin ; Wang, Qifeng ; Du, Xiang</creator><creatorcontrib>Xu, Qinghua ; Chen, Jinying ; Ni, Shujuan ; Tan, Cong ; Xu, Midie ; Dong, Lei ; Yuan, Lin ; Wang, Qifeng ; Du, Xiang</creatorcontrib><description>Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an important clinical application of molecular diagnostics. Previous studies have paved the way for gene expression-based tumor type classification. In this study, we have established a comprehensive database integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22 common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of 96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626 primary tumors, of which 97.1% of cases were correctly classified. Furthermore, we tested the signature on a spectrum of diagnostically challenging tumors. An overall accuracy of 92% was achieved on the 1248 tumor specimens that were poorly differentiated, undifferentiated or from metastatic tumors. Thus, we have identified a 154-gene expression signature that can accurately classify a broad spectrum of tumor types. This gene panel may hold a promise to be a useful additional tool for the determination of the tumor origin.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1038/modpathol.2016.60</identifier><identifier>PMID: 26990976</identifier><identifier>CODEN: MODPEO</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38/39 ; 38/91 ; 631/67/1680 ; 692/53/2421 ; Biomarkers, Tumor - genetics ; Cancer therapies ; Computational Biology ; Databases, Genetic ; Female ; Gene expression ; Gene Expression Profiling - methods ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing ; Humans ; Identification ; Laboratory Medicine ; Male ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Metastasis ; Neoplasms, Unknown Primary - classification ; Neoplasms, Unknown Primary - genetics ; Oligonucleotide Array Sequence Analysis ; original-article ; Pathology ; Predictive Value of Tests ; Reproducibility of Results ; Transcriptome ; Tumors</subject><ispartof>Modern pathology, 2016-06, Vol.29 (6), p.546-556</ispartof><rights>United States &amp; Canadian Academy of Pathology 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b5437e32d11d0f858060818e8a6537672a43c508c99d040833ddec94713fe823</citedby><cites>FETCH-LOGICAL-c415t-b5437e32d11d0f858060818e8a6537672a43c508c99d040833ddec94713fe823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1792585158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26990976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Qinghua</creatorcontrib><creatorcontrib>Chen, Jinying</creatorcontrib><creatorcontrib>Ni, Shujuan</creatorcontrib><creatorcontrib>Tan, Cong</creatorcontrib><creatorcontrib>Xu, Midie</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Yuan, Lin</creatorcontrib><creatorcontrib>Wang, Qifeng</creatorcontrib><creatorcontrib>Du, Xiang</creatorcontrib><title>Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><addtitle>Mod Pathol</addtitle><description>Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an important clinical application of molecular diagnostics. Previous studies have paved the way for gene expression-based tumor type classification. In this study, we have established a comprehensive database integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22 common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of 96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626 primary tumors, of which 97.1% of cases were correctly classified. Furthermore, we tested the signature on a spectrum of diagnostically challenging tumors. An overall accuracy of 92% was achieved on the 1248 tumor specimens that were poorly differentiated, undifferentiated or from metastatic tumors. Thus, we have identified a 154-gene expression signature that can accurately classify a broad spectrum of tumor types. This gene panel may hold a promise to be a useful additional tool for the determination of the tumor origin.</description><subject>38/39</subject><subject>38/91</subject><subject>631/67/1680</subject><subject>692/53/2421</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer therapies</subject><subject>Computational Biology</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Identification</subject><subject>Laboratory Medicine</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastasis</subject><subject>Neoplasms, Unknown Primary - classification</subject><subject>Neoplasms, Unknown Primary - genetics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>original-article</subject><subject>Pathology</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Transcriptome</subject><subject>Tumors</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwyTK2Y8c-oqp8SJXg0HvkOpOtq8QOHgfRf0-WLRVC4jSHed53pHkYey1gL0DZ93MeFl9v87SXIMzewBO2E1pBA9Lqp2wH1qlGOS3P2AuiOwDRaiufszNpnAPXmR2jbz41waeAhdfiE4USl5pn5D756Z4i8YI_0E_EPT9gQo4_l4JEMSdO8ZB8XQvyMW_xW-RxwFTjGIOvRyCPvK7zcReJVuS5xENML9mzcSvEVw_znF1_vLy--Nxcff305eLDVRNaoWtzo1vVoZKDEAOMVlswYIVF641Wnemkb1XQYINzA7RglRoGDK7thBrRSnXO3p1ql5K_r0i1nyMFnCafMK_Ui84pKYx0ZkPf_oPe5bVsD_hNSW210HajxIkKJRMVHPulxNmX-15AfxTSPwrpj0J6A1vmzUPzejPj8Jj4Y2AD5AmgbZUOWP46_d_WXw8qm0Q</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Xu, Qinghua</creator><creator>Chen, Jinying</creator><creator>Ni, Shujuan</creator><creator>Tan, Cong</creator><creator>Xu, Midie</creator><creator>Dong, Lei</creator><creator>Yuan, Lin</creator><creator>Wang, Qifeng</creator><creator>Du, Xiang</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin</title><author>Xu, Qinghua ; Chen, Jinying ; Ni, Shujuan ; Tan, Cong ; Xu, Midie ; Dong, Lei ; Yuan, Lin ; Wang, Qifeng ; Du, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b5437e32d11d0f858060818e8a6537672a43c508c99d040833ddec94713fe823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>38/39</topic><topic>38/91</topic><topic>631/67/1680</topic><topic>692/53/2421</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer therapies</topic><topic>Computational Biology</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Identification</topic><topic>Laboratory Medicine</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastasis</topic><topic>Neoplasms, Unknown Primary - classification</topic><topic>Neoplasms, Unknown Primary - genetics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>original-article</topic><topic>Pathology</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Transcriptome</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qinghua</creatorcontrib><creatorcontrib>Chen, Jinying</creatorcontrib><creatorcontrib>Ni, Shujuan</creatorcontrib><creatorcontrib>Tan, Cong</creatorcontrib><creatorcontrib>Xu, Midie</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Yuan, Lin</creatorcontrib><creatorcontrib>Wang, Qifeng</creatorcontrib><creatorcontrib>Du, Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qinghua</au><au>Chen, Jinying</au><au>Ni, Shujuan</au><au>Tan, Cong</au><au>Xu, Midie</au><au>Dong, Lei</au><au>Yuan, Lin</au><au>Wang, Qifeng</au><au>Du, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin</atitle><jtitle>Modern pathology</jtitle><stitle>Mod Pathol</stitle><addtitle>Mod Pathol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>29</volume><issue>6</issue><spage>546</spage><epage>556</epage><pages>546-556</pages><issn>0893-3952</issn><eissn>1530-0285</eissn><coden>MODPEO</coden><abstract>Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an important clinical application of molecular diagnostics. Previous studies have paved the way for gene expression-based tumor type classification. In this study, we have established a comprehensive database integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22 common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of 96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626 primary tumors, of which 97.1% of cases were correctly classified. Furthermore, we tested the signature on a spectrum of diagnostically challenging tumors. An overall accuracy of 92% was achieved on the 1248 tumor specimens that were poorly differentiated, undifferentiated or from metastatic tumors. Thus, we have identified a 154-gene expression signature that can accurately classify a broad spectrum of tumor types. This gene panel may hold a promise to be a useful additional tool for the determination of the tumor origin.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26990976</pmid><doi>10.1038/modpathol.2016.60</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-3952
ispartof Modern pathology, 2016-06, Vol.29 (6), p.546-556
issn 0893-3952
1530-0285
language eng
recordid cdi_proquest_miscellaneous_1793216296
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects 38/39
38/91
631/67/1680
692/53/2421
Biomarkers, Tumor - genetics
Cancer therapies
Computational Biology
Databases, Genetic
Female
Gene expression
Gene Expression Profiling - methods
Genomes
Genomics
High-Throughput Nucleotide Sequencing
Humans
Identification
Laboratory Medicine
Male
Medical prognosis
Medicine
Medicine & Public Health
Metastasis
Neoplasms, Unknown Primary - classification
Neoplasms, Unknown Primary - genetics
Oligonucleotide Array Sequence Analysis
original-article
Pathology
Predictive Value of Tests
Reproducibility of Results
Transcriptome
Tumors
title Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan-cancer%20transcriptome%20analysis%20reveals%20a%20gene%20expression%20signature%20for%20the%20identification%20of%20tumor%20tissue%20origin&rft.jtitle=Modern%20pathology&rft.au=Xu,%20Qinghua&rft.date=2016-06-01&rft.volume=29&rft.issue=6&rft.spage=546&rft.epage=556&rft.pages=546-556&rft.issn=0893-3952&rft.eissn=1530-0285&rft.coden=MODPEO&rft_id=info:doi/10.1038/modpathol.2016.60&rft_dat=%3Cproquest_cross%3E1793216296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792585158&rft_id=info:pmid/26990976&rfr_iscdi=true