autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects

Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biosciences 2016-06, Vol.41 (2), p.283-294
Hauptverfasser: Sawanth, Suresh Kumar, Gajula Gopinath, Nagraj Sambrani, Kallare P Arunkumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 2
container_start_page 283
container_title Journal of biosciences
container_volume 41
creator Sawanth, Suresh Kumar
Gajula Gopinath
Nagraj Sambrani
Kallare P Arunkumar
description Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.
doi_str_mv 10.1007/s12038-016-9609-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793212968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793212968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-11aaa0efb5a2ebfc9c241afb407787d6cf25d877b6b88118a2b6af9be049df863</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhoMozof-ADcamM1sqjlpmw93w-AXDLjQWUpI05PasU2uSQv3_ntz6VXEhRA4ycnzvjm8IeQFsNfAmHyTgbNaVQxEpQXT1f4ROWda1pWEWj0ue96yqtUazshFzg-MgW5q9pSccckbppU-J9_susSEwzrZUg90inH3lt5QF-c5Bjqj-27DmGcaPT1hY-mX0w880Ix72uOCaR7DGAY6YMBMx1BWRrfkZ-SJt1PG56d6Se7fv_t6-7G6-_zh0-3NXeUawZcKwFrL0Het5dh5px1vwPquYVIq2QvnedsrKTvRKQWgLO-E9bpD1ujeK1FfkuvNd5fizxXzYuYxO5wmGzCu2YDUNQeuhSro1T_oQ1xTKNMdKWiFrLksFGyUSzHnhN7s0jjbdDDAzDF7s2VvSvbmmL3ZF83Lk_Pazdj_UfwOuwB8A3K5CgOmv57-j-urTeRtNHZIYzb3X3gBjr_Z6pbVvwAPzJmr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791567327</pqid></control><display><type>article</type><title>autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects</title><source>MEDLINE</source><source>Indian Academy of Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sawanth, Suresh Kumar ; Gajula Gopinath ; Nagraj Sambrani ; Kallare P Arunkumar</creator><creatorcontrib>Sawanth, Suresh Kumar ; Gajula Gopinath ; Nagraj Sambrani ; Kallare P Arunkumar</creatorcontrib><description>Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.</description><identifier>ISSN: 0250-5991</identifier><identifier>EISSN: 0973-7138</identifier><identifier>DOI: 10.1007/s12038-016-9609-x</identifier><identifier>PMID: 27240989</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>alternative splicing ; Amino Acid Sequence ; Animals ; Apis mellifera ; Bees - genetics ; Bees - growth &amp; development ; Biomedical and Life Sciences ; Biomedicine ; Bombyx - genetics ; Bombyx - growth &amp; development ; Bombyx mori ; Cell Biology ; Coleoptera ; DNA-Binding Proteins - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Drosophila Proteins - genetics ; Embryos ; evolution ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental ; genes ; Genetics ; Insects ; insulin-like growth factor II ; Insulin-Like Growth Factor II - genetics ; Life Sciences ; Male ; Microbiology ; Plant Sciences ; Review ; RNA Splicing - genetics ; RNA-Binding Proteins - genetics ; sex determination ; Sex Determination Processes ; Sexes ; Signal Transduction - genetics ; Taxa ; Zoology</subject><ispartof>Journal of biosciences, 2016-06, Vol.41 (2), p.283-294</ispartof><rights>Indian Academy of Sciences 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-11aaa0efb5a2ebfc9c241afb407787d6cf25d877b6b88118a2b6af9be049df863</citedby><cites>FETCH-LOGICAL-c462t-11aaa0efb5a2ebfc9c241afb407787d6cf25d877b6b88118a2b6af9be049df863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12038-016-9609-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12038-016-9609-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27240989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sawanth, Suresh Kumar</creatorcontrib><creatorcontrib>Gajula Gopinath</creatorcontrib><creatorcontrib>Nagraj Sambrani</creatorcontrib><creatorcontrib>Kallare P Arunkumar</creatorcontrib><title>autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects</title><title>Journal of biosciences</title><addtitle>J Biosci</addtitle><addtitle>J Biosci</addtitle><description>Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.</description><subject>alternative splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Apis mellifera</subject><subject>Bees - genetics</subject><subject>Bees - growth &amp; development</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bombyx - genetics</subject><subject>Bombyx - growth &amp; development</subject><subject>Bombyx mori</subject><subject>Cell Biology</subject><subject>Coleoptera</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Drosophila Proteins - genetics</subject><subject>Embryos</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>genes</subject><subject>Genetics</subject><subject>Insects</subject><subject>insulin-like growth factor II</subject><subject>Insulin-Like Growth Factor II - genetics</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Microbiology</subject><subject>Plant Sciences</subject><subject>Review</subject><subject>RNA Splicing - genetics</subject><subject>RNA-Binding Proteins - genetics</subject><subject>sex determination</subject><subject>Sex Determination Processes</subject><subject>Sexes</subject><subject>Signal Transduction - genetics</subject><subject>Taxa</subject><subject>Zoology</subject><issn>0250-5991</issn><issn>0973-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU2L1TAUhoMozof-ADcamM1sqjlpmw93w-AXDLjQWUpI05PasU2uSQv3_ntz6VXEhRA4ycnzvjm8IeQFsNfAmHyTgbNaVQxEpQXT1f4ROWda1pWEWj0ue96yqtUazshFzg-MgW5q9pSccckbppU-J9_susSEwzrZUg90inH3lt5QF-c5Bjqj-27DmGcaPT1hY-mX0w880Ix72uOCaR7DGAY6YMBMx1BWRrfkZ-SJt1PG56d6Se7fv_t6-7G6-_zh0-3NXeUawZcKwFrL0Het5dh5px1vwPquYVIq2QvnedsrKTvRKQWgLO-E9bpD1ujeK1FfkuvNd5fizxXzYuYxO5wmGzCu2YDUNQeuhSro1T_oQ1xTKNMdKWiFrLksFGyUSzHnhN7s0jjbdDDAzDF7s2VvSvbmmL3ZF83Lk_Pazdj_UfwOuwB8A3K5CgOmv57-j-urTeRtNHZIYzb3X3gBjr_Z6pbVvwAPzJmr</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Sawanth, Suresh Kumar</creator><creator>Gajula Gopinath</creator><creator>Nagraj Sambrani</creator><creator>Kallare P Arunkumar</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects</title><author>Sawanth, Suresh Kumar ; Gajula Gopinath ; Nagraj Sambrani ; Kallare P Arunkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-11aaa0efb5a2ebfc9c241afb407787d6cf25d877b6b88118a2b6af9be049df863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>alternative splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Apis mellifera</topic><topic>Bees - genetics</topic><topic>Bees - growth &amp; development</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bombyx - genetics</topic><topic>Bombyx - growth &amp; development</topic><topic>Bombyx mori</topic><topic>Cell Biology</topic><topic>Coleoptera</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Drosophila Proteins - genetics</topic><topic>Embryos</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>genes</topic><topic>Genetics</topic><topic>Insects</topic><topic>insulin-like growth factor II</topic><topic>Insulin-Like Growth Factor II - genetics</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Microbiology</topic><topic>Plant Sciences</topic><topic>Review</topic><topic>RNA Splicing - genetics</topic><topic>RNA-Binding Proteins - genetics</topic><topic>sex determination</topic><topic>Sex Determination Processes</topic><topic>Sexes</topic><topic>Signal Transduction - genetics</topic><topic>Taxa</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawanth, Suresh Kumar</creatorcontrib><creatorcontrib>Gajula Gopinath</creatorcontrib><creatorcontrib>Nagraj Sambrani</creatorcontrib><creatorcontrib>Kallare P Arunkumar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawanth, Suresh Kumar</au><au>Gajula Gopinath</au><au>Nagraj Sambrani</au><au>Kallare P Arunkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects</atitle><jtitle>Journal of biosciences</jtitle><stitle>J Biosci</stitle><addtitle>J Biosci</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>41</volume><issue>2</issue><spage>283</spage><epage>294</epage><pages>283-294</pages><issn>0250-5991</issn><eissn>0973-7138</eissn><abstract>Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>27240989</pmid><doi>10.1007/s12038-016-9609-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0250-5991
ispartof Journal of biosciences, 2016-06, Vol.41 (2), p.283-294
issn 0250-5991
0973-7138
language eng
recordid cdi_proquest_miscellaneous_1793212968
source MEDLINE; Indian Academy of Sciences; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects alternative splicing
Amino Acid Sequence
Animals
Apis mellifera
Bees - genetics
Bees - growth & development
Biomedical and Life Sciences
Biomedicine
Bombyx - genetics
Bombyx - growth & development
Bombyx mori
Cell Biology
Coleoptera
DNA-Binding Proteins - genetics
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila Proteins - genetics
Embryos
evolution
Evolution, Molecular
Female
Gene Expression Regulation, Developmental
genes
Genetics
Insects
insulin-like growth factor II
Insulin-Like Growth Factor II - genetics
Life Sciences
Male
Microbiology
Plant Sciences
Review
RNA Splicing - genetics
RNA-Binding Proteins - genetics
sex determination
Sex Determination Processes
Sexes
Signal Transduction - genetics
Taxa
Zoology
title autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=autoregulatory%20loop:%20A%20common%20mechanism%20of%20regulation%20of%20key%20sex%20determining%20genes%20in%20insects&rft.jtitle=Journal%20of%20biosciences&rft.au=Sawanth,%20Suresh%20Kumar&rft.date=2016-06-01&rft.volume=41&rft.issue=2&rft.spage=283&rft.epage=294&rft.pages=283-294&rft.issn=0250-5991&rft.eissn=0973-7138&rft_id=info:doi/10.1007/s12038-016-9609-x&rft_dat=%3Cproquest_cross%3E1793212968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791567327&rft_id=info:pmid/27240989&rfr_iscdi=true