Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells
ABSTRACT There has been substantial effort directed toward the application of bone marrow and adipose‐derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue‐specific stem cells have been described in a variety of mesenchymal structures inclu...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2016-06, Vol.34 (6), p.985-994 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 994 |
---|---|
container_issue | 6 |
container_start_page | 985 |
container_title | Journal of orthopaedic research |
container_volume | 34 |
creator | Kowalski, Tomasz J. Leong, Natalie L. Dar, Ayelet Wu, Ling Kabir, Nima Khan, Adam Z. Eliasberg, Claire D. Pedron, Andrew Karayan, Ashant Lee, Siyoung Di Pauli von Treuheim, Theodor Jiacheng, Jin Wu, Ben M. Evseenko, Denis McAllister, David R. Petrigliano, Frank A. |
description | ABSTRACT
There has been substantial effort directed toward the application of bone marrow and adipose‐derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue‐specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)‐derived cell populations with the potential for ligament regeneration: ligament‐forming fibroblasts (LFF: CD146neg, CD34negCD44pos, CD31neg, CD45neg), ligament perivascular cells (LPC: CD146posCD34negCD44pos, CD31neg, CD45neg) and ligament interstitial cells (LIC: CD34posCD146neg, CD44pos, CD31neg, CD45neg)—and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8‐ and 3.3‐fold, respectively) and LFFs (by 3‐ and 3.5‐fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4‐ and 3.5‐fold, respectively), LFFs (by 5.5‐ and 3‐fold, respectively), LPCs (by 10‐ and 4.5‐fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:985–994, 2016. |
doi_str_mv | 10.1002/jor.23116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1792370919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1792370919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3986-3366be4347c1ecef8e46609a2996d85599b234679d0e51c1c05371d962a936693</originalsourceid><addsrcrecordid>eNp1kE1LKzEUhoMoWj8W_oHLLHUxmo9JMllKubcqRUWUugtpcnqJpjM1mdH235tadeficODwPC-HF6Fjgs8IxvT8uY1nlBEittCAcF6VnMqnbTTAkokSUyH20H5KzxhjSWi9i_byiRLG1QCFy9WiXXpb2D50fYTCto3znW-bVPjG9RbyshFMAlfMoTPTNmQ6mg4K07iMh2D-Q1PkgQKWiwgpZTtbxcVwXDqI_i2rFkJIh2hnZkKCo699gB7__X0YXpbj29HV8GJcWqZqUTImxBQqVklLwMKshkoIrAxVSriac6WmlFVCKoeBE0ss5kwSpwQ1KquKHaCTTe4itq89pE7PfVp_YBpo-6SJVJRJrMgaPd2gNrYpRZjpRfRzE1eaYL0uV-dy9We5mf3zFdtP5-B-yO82M3C-Ad59gNXvSfr69v47stwYPnWw_DFMfNFCMsn15GakJ_esfpjcTfQT-wCy9JLy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792370919</pqid></control><display><type>article</type><title>Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Kowalski, Tomasz J. ; Leong, Natalie L. ; Dar, Ayelet ; Wu, Ling ; Kabir, Nima ; Khan, Adam Z. ; Eliasberg, Claire D. ; Pedron, Andrew ; Karayan, Ashant ; Lee, Siyoung ; Di Pauli von Treuheim, Theodor ; Jiacheng, Jin ; Wu, Ben M. ; Evseenko, Denis ; McAllister, David R. ; Petrigliano, Frank A.</creator><creatorcontrib>Kowalski, Tomasz J. ; Leong, Natalie L. ; Dar, Ayelet ; Wu, Ling ; Kabir, Nima ; Khan, Adam Z. ; Eliasberg, Claire D. ; Pedron, Andrew ; Karayan, Ashant ; Lee, Siyoung ; Di Pauli von Treuheim, Theodor ; Jiacheng, Jin ; Wu, Ben M. ; Evseenko, Denis ; McAllister, David R. ; Petrigliano, Frank A.</creatorcontrib><description>ABSTRACT
There has been substantial effort directed toward the application of bone marrow and adipose‐derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue‐specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)‐derived cell populations with the potential for ligament regeneration: ligament‐forming fibroblasts (LFF: CD146neg, CD34negCD44pos, CD31neg, CD45neg), ligament perivascular cells (LPC: CD146posCD34negCD44pos, CD31neg, CD45neg) and ligament interstitial cells (LIC: CD34posCD146neg, CD44pos, CD31neg, CD45neg)—and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8‐ and 3.3‐fold, respectively) and LFFs (by 3‐ and 3.5‐fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4‐ and 3.5‐fold, respectively), LFFs (by 5.5‐ and 3‐fold, respectively), LPCs (by 10‐ and 4.5‐fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:985–994, 2016.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.23116</identifier><identifier>PMID: 26621359</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>ACL ; Adolescent ; Adult ; Anterior Cruciate Ligament - cytology ; Anterior Cruciate Ligament - metabolism ; Basal Metabolism ; Cell Culture Techniques ; Collagen - metabolism ; Female ; Humans ; Hypoxia - metabolism ; Male ; Middle Aged ; stem cell ; Tissue Engineering ; Young Adult</subject><ispartof>Journal of orthopaedic research, 2016-06, Vol.34 (6), p.985-994</ispartof><rights>2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3986-3366be4347c1ecef8e46609a2996d85599b234679d0e51c1c05371d962a936693</citedby><cites>FETCH-LOGICAL-c3986-3366be4347c1ecef8e46609a2996d85599b234679d0e51c1c05371d962a936693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.23116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.23116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26621359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalski, Tomasz J.</creatorcontrib><creatorcontrib>Leong, Natalie L.</creatorcontrib><creatorcontrib>Dar, Ayelet</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><creatorcontrib>Kabir, Nima</creatorcontrib><creatorcontrib>Khan, Adam Z.</creatorcontrib><creatorcontrib>Eliasberg, Claire D.</creatorcontrib><creatorcontrib>Pedron, Andrew</creatorcontrib><creatorcontrib>Karayan, Ashant</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Di Pauli von Treuheim, Theodor</creatorcontrib><creatorcontrib>Jiacheng, Jin</creatorcontrib><creatorcontrib>Wu, Ben M.</creatorcontrib><creatorcontrib>Evseenko, Denis</creatorcontrib><creatorcontrib>McAllister, David R.</creatorcontrib><creatorcontrib>Petrigliano, Frank A.</creatorcontrib><title>Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>ABSTRACT
There has been substantial effort directed toward the application of bone marrow and adipose‐derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue‐specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)‐derived cell populations with the potential for ligament regeneration: ligament‐forming fibroblasts (LFF: CD146neg, CD34negCD44pos, CD31neg, CD45neg), ligament perivascular cells (LPC: CD146posCD34negCD44pos, CD31neg, CD45neg) and ligament interstitial cells (LIC: CD34posCD146neg, CD44pos, CD31neg, CD45neg)—and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8‐ and 3.3‐fold, respectively) and LFFs (by 3‐ and 3.5‐fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4‐ and 3.5‐fold, respectively), LFFs (by 5.5‐ and 3‐fold, respectively), LPCs (by 10‐ and 4.5‐fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:985–994, 2016.</description><subject>ACL</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Anterior Cruciate Ligament - cytology</subject><subject>Anterior Cruciate Ligament - metabolism</subject><subject>Basal Metabolism</subject><subject>Cell Culture Techniques</subject><subject>Collagen - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Hypoxia - metabolism</subject><subject>Male</subject><subject>Middle Aged</subject><subject>stem cell</subject><subject>Tissue Engineering</subject><subject>Young Adult</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LKzEUhoMoWj8W_oHLLHUxmo9JMllKubcqRUWUugtpcnqJpjM1mdH235tadeficODwPC-HF6Fjgs8IxvT8uY1nlBEittCAcF6VnMqnbTTAkokSUyH20H5KzxhjSWi9i_byiRLG1QCFy9WiXXpb2D50fYTCto3znW-bVPjG9RbyshFMAlfMoTPTNmQ6mg4K07iMh2D-Q1PkgQKWiwgpZTtbxcVwXDqI_i2rFkJIh2hnZkKCo699gB7__X0YXpbj29HV8GJcWqZqUTImxBQqVklLwMKshkoIrAxVSriac6WmlFVCKoeBE0ss5kwSpwQ1KquKHaCTTe4itq89pE7PfVp_YBpo-6SJVJRJrMgaPd2gNrYpRZjpRfRzE1eaYL0uV-dy9We5mf3zFdtP5-B-yO82M3C-Ad59gNXvSfr69v47stwYPnWw_DFMfNFCMsn15GakJ_esfpjcTfQT-wCy9JLy</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Kowalski, Tomasz J.</creator><creator>Leong, Natalie L.</creator><creator>Dar, Ayelet</creator><creator>Wu, Ling</creator><creator>Kabir, Nima</creator><creator>Khan, Adam Z.</creator><creator>Eliasberg, Claire D.</creator><creator>Pedron, Andrew</creator><creator>Karayan, Ashant</creator><creator>Lee, Siyoung</creator><creator>Di Pauli von Treuheim, Theodor</creator><creator>Jiacheng, Jin</creator><creator>Wu, Ben M.</creator><creator>Evseenko, Denis</creator><creator>McAllister, David R.</creator><creator>Petrigliano, Frank A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells</title><author>Kowalski, Tomasz J. ; Leong, Natalie L. ; Dar, Ayelet ; Wu, Ling ; Kabir, Nima ; Khan, Adam Z. ; Eliasberg, Claire D. ; Pedron, Andrew ; Karayan, Ashant ; Lee, Siyoung ; Di Pauli von Treuheim, Theodor ; Jiacheng, Jin ; Wu, Ben M. ; Evseenko, Denis ; McAllister, David R. ; Petrigliano, Frank A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3986-3366be4347c1ecef8e46609a2996d85599b234679d0e51c1c05371d962a936693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ACL</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Anterior Cruciate Ligament - cytology</topic><topic>Anterior Cruciate Ligament - metabolism</topic><topic>Basal Metabolism</topic><topic>Cell Culture Techniques</topic><topic>Collagen - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Hypoxia - metabolism</topic><topic>Male</topic><topic>Middle Aged</topic><topic>stem cell</topic><topic>Tissue Engineering</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Tomasz J.</creatorcontrib><creatorcontrib>Leong, Natalie L.</creatorcontrib><creatorcontrib>Dar, Ayelet</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><creatorcontrib>Kabir, Nima</creatorcontrib><creatorcontrib>Khan, Adam Z.</creatorcontrib><creatorcontrib>Eliasberg, Claire D.</creatorcontrib><creatorcontrib>Pedron, Andrew</creatorcontrib><creatorcontrib>Karayan, Ashant</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Di Pauli von Treuheim, Theodor</creatorcontrib><creatorcontrib>Jiacheng, Jin</creatorcontrib><creatorcontrib>Wu, Ben M.</creatorcontrib><creatorcontrib>Evseenko, Denis</creatorcontrib><creatorcontrib>McAllister, David R.</creatorcontrib><creatorcontrib>Petrigliano, Frank A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Tomasz J.</au><au>Leong, Natalie L.</au><au>Dar, Ayelet</au><au>Wu, Ling</au><au>Kabir, Nima</au><au>Khan, Adam Z.</au><au>Eliasberg, Claire D.</au><au>Pedron, Andrew</au><au>Karayan, Ashant</au><au>Lee, Siyoung</au><au>Di Pauli von Treuheim, Theodor</au><au>Jiacheng, Jin</au><au>Wu, Ben M.</au><au>Evseenko, Denis</au><au>McAllister, David R.</au><au>Petrigliano, Frank A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2016-06</date><risdate>2016</risdate><volume>34</volume><issue>6</issue><spage>985</spage><epage>994</epage><pages>985-994</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>ABSTRACT
There has been substantial effort directed toward the application of bone marrow and adipose‐derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue‐specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)‐derived cell populations with the potential for ligament regeneration: ligament‐forming fibroblasts (LFF: CD146neg, CD34negCD44pos, CD31neg, CD45neg), ligament perivascular cells (LPC: CD146posCD34negCD44pos, CD31neg, CD45neg) and ligament interstitial cells (LIC: CD34posCD146neg, CD44pos, CD31neg, CD45neg)—and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8‐ and 3.3‐fold, respectively) and LFFs (by 3‐ and 3.5‐fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4‐ and 3.5‐fold, respectively), LFFs (by 5.5‐ and 3‐fold, respectively), LPCs (by 10‐ and 4.5‐fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:985–994, 2016.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26621359</pmid><doi>10.1002/jor.23116</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2016-06, Vol.34 (6), p.985-994 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_proquest_miscellaneous_1792370919 |
source | MEDLINE; Wiley Free Content; Wiley Online Library All Journals |
subjects | ACL Adolescent Adult Anterior Cruciate Ligament - cytology Anterior Cruciate Ligament - metabolism Basal Metabolism Cell Culture Techniques Collagen - metabolism Female Humans Hypoxia - metabolism Male Middle Aged stem cell Tissue Engineering Young Adult |
title | Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxic%20culture%20conditions%20induce%20increased%20metabolic%20rate%20and%20collagen%20gene%20expression%20in%20ACL-derived%20cells&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Kowalski,%20Tomasz%20J.&rft.date=2016-06&rft.volume=34&rft.issue=6&rft.spage=985&rft.epage=994&rft.pages=985-994&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.23116&rft_dat=%3Cproquest_cross%3E1792370919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792370919&rft_id=info:pmid/26621359&rfr_iscdi=true |