Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase

Plant cell walls are composed of a large number of complex polysaccharides, which contain at least 13 different monosaccharides in a multitude of linkages. This structural complexity of cell wall components is paralleled by a large number of predicted glycosyltransferases in plant genomes, which can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2004-03, Vol.134 (3), p.940-950
Hauptverfasser: Li, Xuemei, Israel Cordero, Caplan, Jeffrey, Mølhøj, Michael, Reiter, Wolf-Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 950
container_issue 3
container_start_page 940
container_title Plant physiology (Bethesda)
container_volume 134
creator Li, Xuemei
Israel Cordero
Caplan, Jeffrey
Mølhøj, Michael
Reiter, Wolf-Dieter
description Plant cell walls are composed of a large number of complex polysaccharides, which contain at least 13 different monosaccharides in a multitude of linkages. This structural complexity of cell wall components is paralleled by a large number of predicted glycosyltransferases in plant genomes, which can be grouped into several distinct families based on conserved sequence motifs (B. Henrissat, G. J. Davies [2000] Plant Physiol 124: 1515-1519). Despite the wealth of genomic information in Arabidopsis and several crop plants, the biochemical functions of these coding regions have only been established in a few cases. To lay the foundation for the genetic and biochemical characterization of putative glycosyltransferase genes, we conducted a phylogenetic and expression analysis on 10 predicted coding regions (AtGT11-20) that are closely related to the MUR3 xyloglucan galactosyltransferase of Arabidopsis. All of these proteins contain the conserved sequence motif pfam 03016 that is the hallmark of the β-D-glucuronosyltransferase domain of exostosins, a class of animal enzymes involved in the biosynthesis of the extracellular polysaccharide heparan sulfate. Reverse transcriptase-polymerase chain reaction and promoter:β-glucuronidase studies indicate that all AtGT genes are transcribed. Although six of the 10 AtGT genes were expressed in all major plant organs, the remaining four genes showed more restricted expression patterns that were either confined to specific organs or to highly specialized cell types such as hydathodes or pollen grains. T-DNA insertion mutants in AtGT13 and AtGT18 displayed reductions in the Gal content of total cell wall material, suggesting that the disrupted genes encode galactosyltransferases in plant cell wall synthesis.
doi_str_mv 10.1104/pp.103.036285
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17918108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281628</jstor_id><sourcerecordid>4281628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-a0e132b1f7ca2557341e690e1ec657e426daa0890562a3c49b454ca2cb6a8f6f3</originalsourceid><addsrcrecordid>eNpN0E1r3DAQBmBRUpptmmNupeiS3rwdfdnycVnyUUgohARyM2OttHGQLUeyD_73Vdgl7UnD6GE0egm5YLBmDOSvcVwzEGsQJdfqE1kxJXjBldQnZAWQa9C6PiVfU3oFACaY_EJOmQIOldIrstwHb83sMdLNgH5JXaLBUQZ0G3bdsKcPdt-FIVEXQ083EdtuF8Z39fiCU25Yehv64MM-zIlOgU4vlt4_PQj6vOSmnw0O9AY9mimkxU8Rh-RsxGS_kc8OfbLnx_OMPF1fPW5vi7s_N7-3m7vCyEpNBYJlgrfMVQa5UpWQzJZ1blpTqspKXu4QQdegSo7CyLqVSmZq2hK1K504Iz8Pc8cY3mabpqbvkrHe42Dzzg2raqYZ6AyLAzQxpBSta8bY9RiXhkHznnUzjrkUzSHr7H8cB89tb3f_9DHcDC6PAJNB7_LfTZf-c6rmqiqz-35wr2kK8eNecs3yQ-IvZLaQzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17918108</pqid></control><display><type>article</type><title>Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase</title><source>MEDLINE</source><source>OUP_牛津大学出版社现刊</source><source>Free E-Journal (出版社公開部分のみ)</source><source>JSTOR</source><creator>Li, Xuemei ; Israel Cordero ; Caplan, Jeffrey ; Mølhøj, Michael ; Reiter, Wolf-Dieter</creator><creatorcontrib>Li, Xuemei ; Israel Cordero ; Caplan, Jeffrey ; Mølhøj, Michael ; Reiter, Wolf-Dieter</creatorcontrib><description>Plant cell walls are composed of a large number of complex polysaccharides, which contain at least 13 different monosaccharides in a multitude of linkages. This structural complexity of cell wall components is paralleled by a large number of predicted glycosyltransferases in plant genomes, which can be grouped into several distinct families based on conserved sequence motifs (B. Henrissat, G. J. Davies [2000] Plant Physiol 124: 1515-1519). Despite the wealth of genomic information in Arabidopsis and several crop plants, the biochemical functions of these coding regions have only been established in a few cases. To lay the foundation for the genetic and biochemical characterization of putative glycosyltransferase genes, we conducted a phylogenetic and expression analysis on 10 predicted coding regions (AtGT11-20) that are closely related to the MUR3 xyloglucan galactosyltransferase of Arabidopsis. All of these proteins contain the conserved sequence motif pfam 03016 that is the hallmark of the β-D-glucuronosyltransferase domain of exostosins, a class of animal enzymes involved in the biosynthesis of the extracellular polysaccharide heparan sulfate. Reverse transcriptase-polymerase chain reaction and promoter:β-glucuronidase studies indicate that all AtGT genes are transcribed. Although six of the 10 AtGT genes were expressed in all major plant organs, the remaining four genes showed more restricted expression patterns that were either confined to specific organs or to highly specialized cell types such as hydathodes or pollen grains. T-DNA insertion mutants in AtGT13 and AtGT18 displayed reductions in the Gal content of total cell wall material, suggesting that the disrupted genes encode galactosyltransferases in plant cell wall synthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.036285</identifier><identifier>PMID: 15020758</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; Base Sequence ; Biological and medical sciences ; Cell Wall - chemistry ; Cell wall components ; Cell walls ; Classical and quantitative genetics. Population genetics. Molecular genetics ; DNA, Bacterial - genetics ; DNA, Plant - genetics ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Galactosyltransferases - genetics ; Gene Expression Profiling ; Generalities. Genetics. Plant material ; Genes ; Genes, Plant ; Genes. Genome ; Genetics and breeding of economic plants ; Genome Analysis ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Multigene Family ; Mutagenesis, Insertional ; Phylogeny ; Plant cells ; Plant roots ; Plants ; Plants, Genetically Modified ; Polymerase chain reaction ; Polysaccharides ; Reverse transcriptase polymerase chain reaction ; Sequence Homology, Amino Acid</subject><ispartof>Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.940-950</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-a0e132b1f7ca2557341e690e1ec657e426daa0890562a3c49b454ca2cb6a8f6f3</citedby><cites>FETCH-LOGICAL-c475t-a0e132b1f7ca2557341e690e1ec657e426daa0890562a3c49b454ca2cb6a8f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281628$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281628$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15592576$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15020758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Israel Cordero</creatorcontrib><creatorcontrib>Caplan, Jeffrey</creatorcontrib><creatorcontrib>Mølhøj, Michael</creatorcontrib><creatorcontrib>Reiter, Wolf-Dieter</creatorcontrib><title>Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plant cell walls are composed of a large number of complex polysaccharides, which contain at least 13 different monosaccharides in a multitude of linkages. This structural complexity of cell wall components is paralleled by a large number of predicted glycosyltransferases in plant genomes, which can be grouped into several distinct families based on conserved sequence motifs (B. Henrissat, G. J. Davies [2000] Plant Physiol 124: 1515-1519). Despite the wealth of genomic information in Arabidopsis and several crop plants, the biochemical functions of these coding regions have only been established in a few cases. To lay the foundation for the genetic and biochemical characterization of putative glycosyltransferase genes, we conducted a phylogenetic and expression analysis on 10 predicted coding regions (AtGT11-20) that are closely related to the MUR3 xyloglucan galactosyltransferase of Arabidopsis. All of these proteins contain the conserved sequence motif pfam 03016 that is the hallmark of the β-D-glucuronosyltransferase domain of exostosins, a class of animal enzymes involved in the biosynthesis of the extracellular polysaccharide heparan sulfate. Reverse transcriptase-polymerase chain reaction and promoter:β-glucuronidase studies indicate that all AtGT genes are transcribed. Although six of the 10 AtGT genes were expressed in all major plant organs, the remaining four genes showed more restricted expression patterns that were either confined to specific organs or to highly specialized cell types such as hydathodes or pollen grains. T-DNA insertion mutants in AtGT13 and AtGT18 displayed reductions in the Gal content of total cell wall material, suggesting that the disrupted genes encode galactosyltransferases in plant cell wall synthesis.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cell Wall - chemistry</subject><subject>Cell wall components</subject><subject>Cell walls</subject><subject>Classical and quantitative genetics. Population genetics. Molecular genetics</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galactosyltransferases - genetics</subject><subject>Gene Expression Profiling</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genes. Genome</subject><subject>Genetics and breeding of economic plants</subject><subject>Genome Analysis</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Mutagenesis, Insertional</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Polymerase chain reaction</subject><subject>Polysaccharides</subject><subject>Reverse transcriptase polymerase chain reaction</subject><subject>Sequence Homology, Amino Acid</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0E1r3DAQBmBRUpptmmNupeiS3rwdfdnycVnyUUgohARyM2OttHGQLUeyD_73Vdgl7UnD6GE0egm5YLBmDOSvcVwzEGsQJdfqE1kxJXjBldQnZAWQa9C6PiVfU3oFACaY_EJOmQIOldIrstwHb83sMdLNgH5JXaLBUQZ0G3bdsKcPdt-FIVEXQ083EdtuF8Z39fiCU25Yehv64MM-zIlOgU4vlt4_PQj6vOSmnw0O9AY9mimkxU8Rh-RsxGS_kc8OfbLnx_OMPF1fPW5vi7s_N7-3m7vCyEpNBYJlgrfMVQa5UpWQzJZ1blpTqspKXu4QQdegSo7CyLqVSmZq2hK1K504Iz8Pc8cY3mabpqbvkrHe42Dzzg2raqYZ6AyLAzQxpBSta8bY9RiXhkHznnUzjrkUzSHr7H8cB89tb3f_9DHcDC6PAJNB7_LfTZf-c6rmqiqz-35wr2kK8eNecs3yQ-IvZLaQzA</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Li, Xuemei</creator><creator>Israel Cordero</creator><creator>Caplan, Jeffrey</creator><creator>Mølhøj, Michael</creator><creator>Reiter, Wolf-Dieter</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20040301</creationdate><title>Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase</title><author>Li, Xuemei ; Israel Cordero ; Caplan, Jeffrey ; Mølhøj, Michael ; Reiter, Wolf-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-a0e132b1f7ca2557341e690e1ec657e426daa0890562a3c49b454ca2cb6a8f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cell Wall - chemistry</topic><topic>Cell wall components</topic><topic>Cell walls</topic><topic>Classical and quantitative genetics. Population genetics. Molecular genetics</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galactosyltransferases - genetics</topic><topic>Gene Expression Profiling</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genes. Genome</topic><topic>Genetics and breeding of economic plants</topic><topic>Genome Analysis</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Mutagenesis, Insertional</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Polymerase chain reaction</topic><topic>Polysaccharides</topic><topic>Reverse transcriptase polymerase chain reaction</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Israel Cordero</creatorcontrib><creatorcontrib>Caplan, Jeffrey</creatorcontrib><creatorcontrib>Mølhøj, Michael</creatorcontrib><creatorcontrib>Reiter, Wolf-Dieter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuemei</au><au>Israel Cordero</au><au>Caplan, Jeffrey</au><au>Mølhøj, Michael</au><au>Reiter, Wolf-Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>134</volume><issue>3</issue><spage>940</spage><epage>950</epage><pages>940-950</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Plant cell walls are composed of a large number of complex polysaccharides, which contain at least 13 different monosaccharides in a multitude of linkages. This structural complexity of cell wall components is paralleled by a large number of predicted glycosyltransferases in plant genomes, which can be grouped into several distinct families based on conserved sequence motifs (B. Henrissat, G. J. Davies [2000] Plant Physiol 124: 1515-1519). Despite the wealth of genomic information in Arabidopsis and several crop plants, the biochemical functions of these coding regions have only been established in a few cases. To lay the foundation for the genetic and biochemical characterization of putative glycosyltransferase genes, we conducted a phylogenetic and expression analysis on 10 predicted coding regions (AtGT11-20) that are closely related to the MUR3 xyloglucan galactosyltransferase of Arabidopsis. All of these proteins contain the conserved sequence motif pfam 03016 that is the hallmark of the β-D-glucuronosyltransferase domain of exostosins, a class of animal enzymes involved in the biosynthesis of the extracellular polysaccharide heparan sulfate. Reverse transcriptase-polymerase chain reaction and promoter:β-glucuronidase studies indicate that all AtGT genes are transcribed. Although six of the 10 AtGT genes were expressed in all major plant organs, the remaining four genes showed more restricted expression patterns that were either confined to specific organs or to highly specialized cell types such as hydathodes or pollen grains. T-DNA insertion mutants in AtGT13 and AtGT18 displayed reductions in the Gal content of total cell wall material, suggesting that the disrupted genes encode galactosyltransferases in plant cell wall synthesis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>15020758</pmid><doi>10.1104/pp.103.036285</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.940-950
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_17918108
source MEDLINE; OUP_牛津大学出版社现刊; Free E-Journal (出版社公開部分のみ); JSTOR
subjects Agronomy. Soil science and plant productions
Amino Acid Sequence
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis thaliana
Base Sequence
Biological and medical sciences
Cell Wall - chemistry
Cell wall components
Cell walls
Classical and quantitative genetics. Population genetics. Molecular genetics
DNA, Bacterial - genetics
DNA, Plant - genetics
Enzymes
Fundamental and applied biological sciences. Psychology
Galactosyltransferases - genetics
Gene Expression Profiling
Generalities. Genetics. Plant material
Genes
Genes, Plant
Genes. Genome
Genetics and breeding of economic plants
Genome Analysis
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Multigene Family
Mutagenesis, Insertional
Phylogeny
Plant cells
Plant roots
Plants
Plants, Genetically Modified
Polymerase chain reaction
Polysaccharides
Reverse transcriptase polymerase chain reaction
Sequence Homology, Amino Acid
title Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Analysis%20of%2010%20Coding%20Regions%20from%20Arabidopsis%20That%20Are%20Homologous%20to%20the%20MUR3%20Xyloglucan%20Galactosyltransferase&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Li,%20Xuemei&rft.date=2004-03-01&rft.volume=134&rft.issue=3&rft.spage=940&rft.epage=950&rft.pages=940-950&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.036285&rft_dat=%3Cjstor_proqu%3E4281628%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17918108&rft_id=info:pmid/15020758&rft_jstor_id=4281628&rfr_iscdi=true