Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2

We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-05, Vol.10 (5), p.5419-5430
Hauptverfasser: Wang, Shanshan, Lee, Gun-Do, Lee, Sungwoo, Yoon, Euijoon, Warner, Jamie H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5430
container_issue 5
container_start_page 5419
container_title ACS nano
container_volume 10
creator Wang, Shanshan
Lee, Gun-Do
Lee, Sungwoo
Yoon, Euijoon
Warner, Jamie H
description We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the surrounding MoS2 lattice, whereas the loss of two S atoms from the same atomic column causes a measurable local contraction. Aggregation of S vacancies into linear line defects along the zigzag direction results in larger lattice compression that is more pronounced as the length of the line defect increases. For the case of two rows of S line vacancies, we find two different types of S atom reconstructions with different amounts of lattice compression. Increasing the width of line defects leads to nanoscale regions of reconstructed MoS2 that are shown by DFT to behave as metallic channels. These results provide important insights into how defect structures could be used for creating metallic tracks within semiconducting monolayer MoS2 films for future applications in electronics and optoelectronics.
doi_str_mv 10.1021/acsnano.6b01673
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1791321240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1791321240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-c1d3f0ee1d255287fd15461c8e88606f4bade63afe4bad04db3f413462bc6ca03</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMobk7P3qRHQap5SZt2x7FNHUwEf4C3kCYv0NEms0nB_fd2bHp63-Hj8d5HyDXQe6AMHpQOTjl_LyoKouAnZAxTLlJaiq_Tf85hRC5C2FCaF2UhzsmIFZBPM8jHZLXAqOoGTTKLvq118obauxC7Xsfau8TbZPkT0ZnBWNcOkwVa1DEktUtevPON2mE30Du7JGdWNQGvjnNCPh-XH_PndP36tJrP1qnieRZTDYZbigiG5TkrC2sgzwToEstSUGGzShkUXFncE81MxW0GPBOs0kIryifk9rB32_nvHkOUbR00No1y6PsgoZgCZ8CyvXpzVPuqRSO3Xd2qbif_3h-Eu4MwdJQb33duuFwClfu48hhXHuPyX4NJa4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791321240</pqid></control><display><type>article</type><title>Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2</title><source>ACS Publications</source><creator>Wang, Shanshan ; Lee, Gun-Do ; Lee, Sungwoo ; Yoon, Euijoon ; Warner, Jamie H</creator><creatorcontrib>Wang, Shanshan ; Lee, Gun-Do ; Lee, Sungwoo ; Yoon, Euijoon ; Warner, Jamie H</creatorcontrib><description>We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the surrounding MoS2 lattice, whereas the loss of two S atoms from the same atomic column causes a measurable local contraction. Aggregation of S vacancies into linear line defects along the zigzag direction results in larger lattice compression that is more pronounced as the length of the line defect increases. For the case of two rows of S line vacancies, we find two different types of S atom reconstructions with different amounts of lattice compression. Increasing the width of line defects leads to nanoscale regions of reconstructed MoS2 that are shown by DFT to behave as metallic channels. These results provide important insights into how defect structures could be used for creating metallic tracks within semiconducting monolayer MoS2 films for future applications in electronics and optoelectronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b01673</identifier><identifier>PMID: 27159415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2016-05, Vol.10 (5), p.5419-5430</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b01673$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b01673$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27159415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Lee, Gun-Do</creatorcontrib><creatorcontrib>Lee, Sungwoo</creatorcontrib><creatorcontrib>Yoon, Euijoon</creatorcontrib><creatorcontrib>Warner, Jamie H</creatorcontrib><title>Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the surrounding MoS2 lattice, whereas the loss of two S atoms from the same atomic column causes a measurable local contraction. Aggregation of S vacancies into linear line defects along the zigzag direction results in larger lattice compression that is more pronounced as the length of the line defect increases. For the case of two rows of S line vacancies, we find two different types of S atom reconstructions with different amounts of lattice compression. Increasing the width of line defects leads to nanoscale regions of reconstructed MoS2 that are shown by DFT to behave as metallic channels. These results provide important insights into how defect structures could be used for creating metallic tracks within semiconducting monolayer MoS2 films for future applications in electronics and optoelectronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUgIMobk7P3qRHQap5SZt2x7FNHUwEf4C3kCYv0NEms0nB_fd2bHp63-Hj8d5HyDXQe6AMHpQOTjl_LyoKouAnZAxTLlJaiq_Tf85hRC5C2FCaF2UhzsmIFZBPM8jHZLXAqOoGTTKLvq118obauxC7Xsfau8TbZPkT0ZnBWNcOkwVa1DEktUtevPON2mE30Du7JGdWNQGvjnNCPh-XH_PndP36tJrP1qnieRZTDYZbigiG5TkrC2sgzwToEstSUGGzShkUXFncE81MxW0GPBOs0kIryifk9rB32_nvHkOUbR00No1y6PsgoZgCZ8CyvXpzVPuqRSO3Xd2qbif_3h-Eu4MwdJQb33duuFwClfu48hhXHuPyX4NJa4k</recordid><startdate>20160524</startdate><enddate>20160524</enddate><creator>Wang, Shanshan</creator><creator>Lee, Gun-Do</creator><creator>Lee, Sungwoo</creator><creator>Yoon, Euijoon</creator><creator>Warner, Jamie H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160524</creationdate><title>Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2</title><author>Wang, Shanshan ; Lee, Gun-Do ; Lee, Sungwoo ; Yoon, Euijoon ; Warner, Jamie H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-c1d3f0ee1d255287fd15461c8e88606f4bade63afe4bad04db3f413462bc6ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Lee, Gun-Do</creatorcontrib><creatorcontrib>Lee, Sungwoo</creatorcontrib><creatorcontrib>Yoon, Euijoon</creatorcontrib><creatorcontrib>Warner, Jamie H</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shanshan</au><au>Lee, Gun-Do</au><au>Lee, Sungwoo</au><au>Yoon, Euijoon</au><au>Warner, Jamie H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-05-24</date><risdate>2016</risdate><volume>10</volume><issue>5</issue><spage>5419</spage><epage>5430</epage><pages>5419-5430</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the surrounding MoS2 lattice, whereas the loss of two S atoms from the same atomic column causes a measurable local contraction. Aggregation of S vacancies into linear line defects along the zigzag direction results in larger lattice compression that is more pronounced as the length of the line defect increases. For the case of two rows of S line vacancies, we find two different types of S atom reconstructions with different amounts of lattice compression. Increasing the width of line defects leads to nanoscale regions of reconstructed MoS2 that are shown by DFT to behave as metallic channels. These results provide important insights into how defect structures could be used for creating metallic tracks within semiconducting monolayer MoS2 films for future applications in electronics and optoelectronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27159415</pmid><doi>10.1021/acsnano.6b01673</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-05, Vol.10 (5), p.5419-5430
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1791321240
source ACS Publications
title Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Atomic%20Reconstruction%20of%20Extended%20Line%20Defects%20in%20Monolayer%20MoS2&rft.jtitle=ACS%20nano&rft.au=Wang,%20Shanshan&rft.date=2016-05-24&rft.volume=10&rft.issue=5&rft.spage=5419&rft.epage=5430&rft.pages=5419-5430&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b01673&rft_dat=%3Cproquest_pubme%3E1791321240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791321240&rft_id=info:pmid/27159415&rfr_iscdi=true