Potential roles for p53 in nucleotide excision repair

Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 1999-08, Vol.20 (8), p.1389-1396
Hauptverfasser: McKay, Bruce C., Ljungman, Mats, Rainbow, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396
container_issue 8
container_start_page 1389
container_title Carcinogenesis (New York)
container_volume 20
creator McKay, Bruce C.
Ljungman, Mats
Rainbow, Andrew J.
description Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that these processes are inducible. GGR appears to be disrupted in p53-deficient fibroblasts, whereas the effect of p53 disruption on TCR remains somewhat controversial. Normal recovery of mRNA synthesis following UV irradiation is thought to depend on TCR. We have found that the recovery of mRNA synthesis following exposure to UV light is severely attenuated in p53-deficient human fibroblasts. Therefore, p53 disruption may lead to a defect in TCR or a post-repair process required for the recovery of mRNA synthesis. Several different functions of p53 have been proposed which could contribute to these cellular processes. We suggest that p53 could participate in GGR and the recovery of mRNA synthesis following UV exposure through the regulation of steady-state levels of one or more p53-regulated gene products important for these processes. Furthermore, we suggest that the role of p53 in the recovery of mRNA synthesis is important for resistance to UV-induced apoptosis.
doi_str_mv 10.1093/carcin/20.8.1389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17911621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17500691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d364215aee17322a20f47fe0ad3225c2ff1a5a5e980f792319f92c75668809a13</originalsourceid><addsrcrecordid>eNqN0M9LHDEUwPFQWupqe-9J5lC8zfpefudYpFVRqgeF4iWk2RdInZ3ZJrOg_70js6hHT-GRz3uHL2PfEJYIThzHUGLujzks7RKFdR_YAqWGlqOFj2wBKEUrhJB7bL_WfwCohXKf2R6C5NpYvmDqehipH3PomjJ0VJs0lGajRJP7pt_GjoYxr6ihh5hrHvqm0Cbk8oV9SqGr9HX3HrDbXz9vTs7ay6vT85Mfl22USo3tSmjJUQUiNILzwCFJkwjCappU5ClhUEGRs5CM4wJdcjwapbW14AKKA3Y0392U4f-W6ujXuUbqutDTsK0ejUPU_D1QAWj3HsitdE5PEGYYy1BroeQ3Ja9DefQI_jm-n-N7Dt765_jTyuHu9vbvmlZvFubaE_i-A6HG0KUS-inrq3NoUNqJtTPLdaSHl-9Q7r02wih_9ufOu9-n1_ZOK38hngAiVpqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17284996</pqid></control><display><type>article</type><title>Potential roles for p53 in nucleotide excision repair</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>McKay, Bruce C. ; Ljungman, Mats ; Rainbow, Andrew J.</creator><creatorcontrib>McKay, Bruce C. ; Ljungman, Mats ; Rainbow, Andrew J.</creatorcontrib><description>Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that these processes are inducible. GGR appears to be disrupted in p53-deficient fibroblasts, whereas the effect of p53 disruption on TCR remains somewhat controversial. Normal recovery of mRNA synthesis following UV irradiation is thought to depend on TCR. We have found that the recovery of mRNA synthesis following exposure to UV light is severely attenuated in p53-deficient human fibroblasts. Therefore, p53 disruption may lead to a defect in TCR or a post-repair process required for the recovery of mRNA synthesis. Several different functions of p53 have been proposed which could contribute to these cellular processes. We suggest that p53 could participate in GGR and the recovery of mRNA synthesis following UV exposure through the regulation of steady-state levels of one or more p53-regulated gene products important for these processes. Furthermore, we suggest that the role of p53 in the recovery of mRNA synthesis is important for resistance to UV-induced apoptosis.</description><identifier>ISSN: 0143-3334</identifier><identifier>ISSN: 1460-2180</identifier><identifier>EISSN: 1460-2180</identifier><identifier>DOI: 10.1093/carcin/20.8.1389</identifier><identifier>PMID: 10426782</identifier><identifier>CODEN: CRNGDP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cockayne syndrome ; Cockayne Syndrome - genetics ; CPD ; cyclobutane pyrimidine dimers ; DNA - radiation effects ; DNA Repair - genetics ; DNA Repair - radiation effects ; Fibroblasts - radiation effects ; Fundamental and applied biological sciences. Psychology ; Genes, p53 - genetics ; Genes, Reporter - genetics ; Genetic Vectors - administration &amp; dosage ; GGR ; global genome repair ; HCR ; host cell reactivation ; Hot Temperature ; HPV-E6 ; human papilloma virus 16 E6 ; Humans ; LFS ; Li–Fraumeni syndrome ; Molecular and cellular biology ; mRNA biosynthesis ; NER ; nucleotide excision repair ; recovery of mRNA synthesis ; RNA, Messenger - biosynthesis ; RRS ; TCR ; Transcription, Genetic - genetics ; Transcription, Genetic - radiation effects ; transcription-coupled repair ; Transfection ; Tumor Suppressor Protein p53 - physiology ; ultraviolet ; Ultraviolet Rays ; xeroderma pigmentosum ; Xeroderma Pigmentosum - genetics</subject><ispartof>Carcinogenesis (New York), 1999-08, Vol.20 (8), p.1389-1396</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d364215aee17322a20f47fe0ad3225c2ff1a5a5e980f792319f92c75668809a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1917148$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10426782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKay, Bruce C.</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Rainbow, Andrew J.</creatorcontrib><title>Potential roles for p53 in nucleotide excision repair</title><title>Carcinogenesis (New York)</title><addtitle>Carcinogenesis</addtitle><description>Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that these processes are inducible. GGR appears to be disrupted in p53-deficient fibroblasts, whereas the effect of p53 disruption on TCR remains somewhat controversial. Normal recovery of mRNA synthesis following UV irradiation is thought to depend on TCR. We have found that the recovery of mRNA synthesis following exposure to UV light is severely attenuated in p53-deficient human fibroblasts. Therefore, p53 disruption may lead to a defect in TCR or a post-repair process required for the recovery of mRNA synthesis. Several different functions of p53 have been proposed which could contribute to these cellular processes. We suggest that p53 could participate in GGR and the recovery of mRNA synthesis following UV exposure through the regulation of steady-state levels of one or more p53-regulated gene products important for these processes. Furthermore, we suggest that the role of p53 in the recovery of mRNA synthesis is important for resistance to UV-induced apoptosis.</description><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cockayne syndrome</subject><subject>Cockayne Syndrome - genetics</subject><subject>CPD</subject><subject>cyclobutane pyrimidine dimers</subject><subject>DNA - radiation effects</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - radiation effects</subject><subject>Fibroblasts - radiation effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, p53 - genetics</subject><subject>Genes, Reporter - genetics</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>GGR</subject><subject>global genome repair</subject><subject>HCR</subject><subject>host cell reactivation</subject><subject>Hot Temperature</subject><subject>HPV-E6</subject><subject>human papilloma virus 16 E6</subject><subject>Humans</subject><subject>LFS</subject><subject>Li–Fraumeni syndrome</subject><subject>Molecular and cellular biology</subject><subject>mRNA biosynthesis</subject><subject>NER</subject><subject>nucleotide excision repair</subject><subject>recovery of mRNA synthesis</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RRS</subject><subject>TCR</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcription, Genetic - radiation effects</subject><subject>transcription-coupled repair</subject><subject>Transfection</subject><subject>Tumor Suppressor Protein p53 - physiology</subject><subject>ultraviolet</subject><subject>Ultraviolet Rays</subject><subject>xeroderma pigmentosum</subject><subject>Xeroderma Pigmentosum - genetics</subject><issn>0143-3334</issn><issn>1460-2180</issn><issn>1460-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0M9LHDEUwPFQWupqe-9J5lC8zfpefudYpFVRqgeF4iWk2RdInZ3ZJrOg_70js6hHT-GRz3uHL2PfEJYIThzHUGLujzks7RKFdR_YAqWGlqOFj2wBKEUrhJB7bL_WfwCohXKf2R6C5NpYvmDqehipH3PomjJ0VJs0lGajRJP7pt_GjoYxr6ihh5hrHvqm0Cbk8oV9SqGr9HX3HrDbXz9vTs7ay6vT85Mfl22USo3tSmjJUQUiNILzwCFJkwjCappU5ClhUEGRs5CM4wJdcjwapbW14AKKA3Y0392U4f-W6ujXuUbqutDTsK0ejUPU_D1QAWj3HsitdE5PEGYYy1BroeQ3Ja9DefQI_jm-n-N7Dt765_jTyuHu9vbvmlZvFubaE_i-A6HG0KUS-inrq3NoUNqJtTPLdaSHl-9Q7r02wih_9ufOu9-n1_ZOK38hngAiVpqE</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>McKay, Bruce C.</creator><creator>Ljungman, Mats</creator><creator>Rainbow, Andrew J.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>7TM</scope></search><sort><creationdate>19990801</creationdate><title>Potential roles for p53 in nucleotide excision repair</title><author>McKay, Bruce C. ; Ljungman, Mats ; Rainbow, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d364215aee17322a20f47fe0ad3225c2ff1a5a5e980f792319f92c75668809a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cockayne syndrome</topic><topic>Cockayne Syndrome - genetics</topic><topic>CPD</topic><topic>cyclobutane pyrimidine dimers</topic><topic>DNA - radiation effects</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - radiation effects</topic><topic>Fibroblasts - radiation effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, p53 - genetics</topic><topic>Genes, Reporter - genetics</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>GGR</topic><topic>global genome repair</topic><topic>HCR</topic><topic>host cell reactivation</topic><topic>Hot Temperature</topic><topic>HPV-E6</topic><topic>human papilloma virus 16 E6</topic><topic>Humans</topic><topic>LFS</topic><topic>Li–Fraumeni syndrome</topic><topic>Molecular and cellular biology</topic><topic>mRNA biosynthesis</topic><topic>NER</topic><topic>nucleotide excision repair</topic><topic>recovery of mRNA synthesis</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RRS</topic><topic>TCR</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcription, Genetic - radiation effects</topic><topic>transcription-coupled repair</topic><topic>Transfection</topic><topic>Tumor Suppressor Protein p53 - physiology</topic><topic>ultraviolet</topic><topic>Ultraviolet Rays</topic><topic>xeroderma pigmentosum</topic><topic>Xeroderma Pigmentosum - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKay, Bruce C.</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Rainbow, Andrew J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Carcinogenesis (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKay, Bruce C.</au><au>Ljungman, Mats</au><au>Rainbow, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential roles for p53 in nucleotide excision repair</atitle><jtitle>Carcinogenesis (New York)</jtitle><addtitle>Carcinogenesis</addtitle><date>1999-08-01</date><risdate>1999</risdate><volume>20</volume><issue>8</issue><spage>1389</spage><epage>1396</epage><pages>1389-1396</pages><issn>0143-3334</issn><issn>1460-2180</issn><eissn>1460-2180</eissn><coden>CRNGDP</coden><abstract>Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that these processes are inducible. GGR appears to be disrupted in p53-deficient fibroblasts, whereas the effect of p53 disruption on TCR remains somewhat controversial. Normal recovery of mRNA synthesis following UV irradiation is thought to depend on TCR. We have found that the recovery of mRNA synthesis following exposure to UV light is severely attenuated in p53-deficient human fibroblasts. Therefore, p53 disruption may lead to a defect in TCR or a post-repair process required for the recovery of mRNA synthesis. Several different functions of p53 have been proposed which could contribute to these cellular processes. We suggest that p53 could participate in GGR and the recovery of mRNA synthesis following UV exposure through the regulation of steady-state levels of one or more p53-regulated gene products important for these processes. Furthermore, we suggest that the role of p53 in the recovery of mRNA synthesis is important for resistance to UV-induced apoptosis.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>10426782</pmid><doi>10.1093/carcin/20.8.1389</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3334
ispartof Carcinogenesis (New York), 1999-08, Vol.20 (8), p.1389-1396
issn 0143-3334
1460-2180
1460-2180
language eng
recordid cdi_proquest_miscellaneous_17911621
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Biological and medical sciences
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cockayne syndrome
Cockayne Syndrome - genetics
CPD
cyclobutane pyrimidine dimers
DNA - radiation effects
DNA Repair - genetics
DNA Repair - radiation effects
Fibroblasts - radiation effects
Fundamental and applied biological sciences. Psychology
Genes, p53 - genetics
Genes, Reporter - genetics
Genetic Vectors - administration & dosage
GGR
global genome repair
HCR
host cell reactivation
Hot Temperature
HPV-E6
human papilloma virus 16 E6
Humans
LFS
Li–Fraumeni syndrome
Molecular and cellular biology
mRNA biosynthesis
NER
nucleotide excision repair
recovery of mRNA synthesis
RNA, Messenger - biosynthesis
RRS
TCR
Transcription, Genetic - genetics
Transcription, Genetic - radiation effects
transcription-coupled repair
Transfection
Tumor Suppressor Protein p53 - physiology
ultraviolet
Ultraviolet Rays
xeroderma pigmentosum
Xeroderma Pigmentosum - genetics
title Potential roles for p53 in nucleotide excision repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20roles%20for%20p53%20in%20nucleotide%20excision%20repair&rft.jtitle=Carcinogenesis%20(New%20York)&rft.au=McKay,%20Bruce%20C.&rft.date=1999-08-01&rft.volume=20&rft.issue=8&rft.spage=1389&rft.epage=1396&rft.pages=1389-1396&rft.issn=0143-3334&rft.eissn=1460-2180&rft.coden=CRNGDP&rft_id=info:doi/10.1093/carcin/20.8.1389&rft_dat=%3Cproquest_cross%3E17500691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17284996&rft_id=info:pmid/10426782&rfr_iscdi=true