Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress
•The effect of salidroside in kainic acid induced-status epilepticus is reported for the first time.•Salidroside protects against kainic acid induced-status epilepticus via suppressing oxidative stress.•The AMPK/SIRT1/FoxO1 pathway may mediate the neuroprotection of salidroside. There are numerous m...
Gespeichert in:
Veröffentlicht in: | Neuroscience letters 2016-04, Vol.618, p.19-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Neuroscience letters |
container_volume | 618 |
creator | Si, Pei-Pei Zhen, Jun-Li Cai, Yun-Lei Wang, Wen-Jing Wang, Wei-Ping |
description | •The effect of salidroside in kainic acid induced-status epilepticus is reported for the first time.•Salidroside protects against kainic acid induced-status epilepticus via suppressing oxidative stress.•The AMPK/SIRT1/FoxO1 pathway may mediate the neuroprotection of salidroside.
There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS. |
doi_str_mv | 10.1016/j.neulet.2016.02.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790973245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304394016301227</els_id><sourcerecordid>1790973245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-a578c862dadffc585339687b49e53ead745ee7f7b942887b30914aaac83053133</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxa0KVBbab1ChHLkk-G9sXypVCEolJA7A2fLaEzTbbBJiZwXfHq-W9lj1NJ6n38zI7xHyjdGGUdZebpoBlh5yw0vXUN5Q1X4iK2Y0r7XV_IisqKCyFlbSE3Ka0oZSqpiSn8kJb4vIRbsi8cH3GOcxYYRqmscMIafKP3scUq5-l4Kh8gFjjUNcAsQqZZ-XVMGEPUwZQ3nv0FdpmaYZUsLhuRpfMfqMOyjwXvtCjjvfJ_j6Uc_I083149VtfXf_89fVj7s6yJbl2ittgml59LHrgjJKCNsavZYWlAAftVQAutNrK7kpuqCWSe99MIIqwYQ4IxeHveUjLwuk7LaYAvS9H2BckmPaUqsFl-o_UK2tEaa1BZUHNBSb0gydm2bc-vnNMer2UbiNO0Th9lE4yl2Jooydf1xY1luIf4f-eF-A7wcAiiU7hNmlgDAUj3EuKbg44r8vvANOOJ3j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777983869</pqid></control><display><type>article</type><title>Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Si, Pei-Pei ; Zhen, Jun-Li ; Cai, Yun-Lei ; Wang, Wen-Jing ; Wang, Wei-Ping</creator><creatorcontrib>Si, Pei-Pei ; Zhen, Jun-Li ; Cai, Yun-Lei ; Wang, Wen-Jing ; Wang, Wei-Ping</creatorcontrib><description>•The effect of salidroside in kainic acid induced-status epilepticus is reported for the first time.•Salidroside protects against kainic acid induced-status epilepticus via suppressing oxidative stress.•The AMPK/SIRT1/FoxO1 pathway may mediate the neuroprotection of salidroside.
There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS.</description><identifier>ISSN: 0304-3940</identifier><identifier>EISSN: 1872-7972</identifier><identifier>DOI: 10.1016/j.neulet.2016.02.056</identifier><identifier>PMID: 26940236</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>AMP-Activated Protein Kinases - metabolism ; Animals ; Antioxidants - pharmacology ; Antioxidants - therapeutic use ; Forkhead Transcription Factors - metabolism ; Glucosides - pharmacology ; Glucosides - therapeutic use ; Glutathione - metabolism ; Hippocampus - metabolism ; Kainic Acid ; Male ; Malondialdehyde - metabolism ; Mice, Inbred C57BL ; Nerve Tissue Proteins - metabolism ; Neuroprotective Agents - pharmacology ; Neuroprotective Agents - therapeutic use ; Oxidative stress ; Oxidative Stress - drug effects ; Phenols - pharmacology ; Phenols - therapeutic use ; Protection ; Salidroside ; Seizures - physiopathology ; Seizures - prevention & control ; Sirtuin 1 - metabolism ; Status epilepticus ; Status Epilepticus - chemically induced ; Status Epilepticus - metabolism ; Status Epilepticus - physiopathology ; Status Epilepticus - prevention & control ; Superoxide Dismutase - metabolism</subject><ispartof>Neuroscience letters, 2016-04, Vol.618, p.19-24</ispartof><rights>2016 Elsevier Ireland Ltd</rights><rights>Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-a578c862dadffc585339687b49e53ead745ee7f7b942887b30914aaac83053133</citedby><cites>FETCH-LOGICAL-c461t-a578c862dadffc585339687b49e53ead745ee7f7b942887b30914aaac83053133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neulet.2016.02.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26940236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Si, Pei-Pei</creatorcontrib><creatorcontrib>Zhen, Jun-Li</creatorcontrib><creatorcontrib>Cai, Yun-Lei</creatorcontrib><creatorcontrib>Wang, Wen-Jing</creatorcontrib><creatorcontrib>Wang, Wei-Ping</creatorcontrib><title>Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress</title><title>Neuroscience letters</title><addtitle>Neurosci Lett</addtitle><description>•The effect of salidroside in kainic acid induced-status epilepticus is reported for the first time.•Salidroside protects against kainic acid induced-status epilepticus via suppressing oxidative stress.•The AMPK/SIRT1/FoxO1 pathway may mediate the neuroprotection of salidroside.
There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS.</description><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Antioxidants - pharmacology</subject><subject>Antioxidants - therapeutic use</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Glucosides - pharmacology</subject><subject>Glucosides - therapeutic use</subject><subject>Glutathione - metabolism</subject><subject>Hippocampus - metabolism</subject><subject>Kainic Acid</subject><subject>Male</subject><subject>Malondialdehyde - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Phenols - pharmacology</subject><subject>Phenols - therapeutic use</subject><subject>Protection</subject><subject>Salidroside</subject><subject>Seizures - physiopathology</subject><subject>Seizures - prevention & control</subject><subject>Sirtuin 1 - metabolism</subject><subject>Status epilepticus</subject><subject>Status Epilepticus - chemically induced</subject><subject>Status Epilepticus - metabolism</subject><subject>Status Epilepticus - physiopathology</subject><subject>Status Epilepticus - prevention & control</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0304-3940</issn><issn>1872-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9P3DAQxa0KVBbab1ChHLkk-G9sXypVCEolJA7A2fLaEzTbbBJiZwXfHq-W9lj1NJ6n38zI7xHyjdGGUdZebpoBlh5yw0vXUN5Q1X4iK2Y0r7XV_IisqKCyFlbSE3Ka0oZSqpiSn8kJb4vIRbsi8cH3GOcxYYRqmscMIafKP3scUq5-l4Kh8gFjjUNcAsQqZZ-XVMGEPUwZQ3nv0FdpmaYZUsLhuRpfMfqMOyjwXvtCjjvfJ_j6Uc_I083149VtfXf_89fVj7s6yJbl2ittgml59LHrgjJKCNsavZYWlAAftVQAutNrK7kpuqCWSe99MIIqwYQ4IxeHveUjLwuk7LaYAvS9H2BckmPaUqsFl-o_UK2tEaa1BZUHNBSb0gydm2bc-vnNMer2UbiNO0Th9lE4yl2Jooydf1xY1luIf4f-eF-A7wcAiiU7hNmlgDAUj3EuKbg44r8vvANOOJ3j</recordid><startdate>20160408</startdate><enddate>20160408</enddate><creator>Si, Pei-Pei</creator><creator>Zhen, Jun-Li</creator><creator>Cai, Yun-Lei</creator><creator>Wang, Wen-Jing</creator><creator>Wang, Wei-Ping</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20160408</creationdate><title>Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress</title><author>Si, Pei-Pei ; Zhen, Jun-Li ; Cai, Yun-Lei ; Wang, Wen-Jing ; Wang, Wei-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-a578c862dadffc585339687b49e53ead745ee7f7b942887b30914aaac83053133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Antioxidants - pharmacology</topic><topic>Antioxidants - therapeutic use</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Glucosides - pharmacology</topic><topic>Glucosides - therapeutic use</topic><topic>Glutathione - metabolism</topic><topic>Hippocampus - metabolism</topic><topic>Kainic Acid</topic><topic>Male</topic><topic>Malondialdehyde - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Phenols - pharmacology</topic><topic>Phenols - therapeutic use</topic><topic>Protection</topic><topic>Salidroside</topic><topic>Seizures - physiopathology</topic><topic>Seizures - prevention & control</topic><topic>Sirtuin 1 - metabolism</topic><topic>Status epilepticus</topic><topic>Status Epilepticus - chemically induced</topic><topic>Status Epilepticus - metabolism</topic><topic>Status Epilepticus - physiopathology</topic><topic>Status Epilepticus - prevention & control</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Pei-Pei</creatorcontrib><creatorcontrib>Zhen, Jun-Li</creatorcontrib><creatorcontrib>Cai, Yun-Lei</creatorcontrib><creatorcontrib>Wang, Wen-Jing</creatorcontrib><creatorcontrib>Wang, Wei-Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuroscience letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Pei-Pei</au><au>Zhen, Jun-Li</au><au>Cai, Yun-Lei</au><au>Wang, Wen-Jing</au><au>Wang, Wei-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress</atitle><jtitle>Neuroscience letters</jtitle><addtitle>Neurosci Lett</addtitle><date>2016-04-08</date><risdate>2016</risdate><volume>618</volume><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>0304-3940</issn><eissn>1872-7972</eissn><abstract>•The effect of salidroside in kainic acid induced-status epilepticus is reported for the first time.•Salidroside protects against kainic acid induced-status epilepticus via suppressing oxidative stress.•The AMPK/SIRT1/FoxO1 pathway may mediate the neuroprotection of salidroside.
There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>26940236</pmid><doi>10.1016/j.neulet.2016.02.056</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3940 |
ispartof | Neuroscience letters, 2016-04, Vol.618, p.19-24 |
issn | 0304-3940 1872-7972 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790973245 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | AMP-Activated Protein Kinases - metabolism Animals Antioxidants - pharmacology Antioxidants - therapeutic use Forkhead Transcription Factors - metabolism Glucosides - pharmacology Glucosides - therapeutic use Glutathione - metabolism Hippocampus - metabolism Kainic Acid Male Malondialdehyde - metabolism Mice, Inbred C57BL Nerve Tissue Proteins - metabolism Neuroprotective Agents - pharmacology Neuroprotective Agents - therapeutic use Oxidative stress Oxidative Stress - drug effects Phenols - pharmacology Phenols - therapeutic use Protection Salidroside Seizures - physiopathology Seizures - prevention & control Sirtuin 1 - metabolism Status epilepticus Status Epilepticus - chemically induced Status Epilepticus - metabolism Status Epilepticus - physiopathology Status Epilepticus - prevention & control Superoxide Dismutase - metabolism |
title | Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salidroside%20protects%20against%20kainic%20acid-induced%20status%20epilepticus%20via%20suppressing%20oxidative%20stress&rft.jtitle=Neuroscience%20letters&rft.au=Si,%20Pei-Pei&rft.date=2016-04-08&rft.volume=618&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=0304-3940&rft.eissn=1872-7972&rft_id=info:doi/10.1016/j.neulet.2016.02.056&rft_dat=%3Cproquest_cross%3E1790973245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777983869&rft_id=info:pmid/26940236&rft_els_id=S0304394016301227&rfr_iscdi=true |