Energetics of Bottom Ekman Layers during Buoyancy Arrest

Turbulent bottom Ekman layers are among the most important energy conversion sites in the ocean. Their energetics are notoriously complex, in particular near sloping topography, where the feedback between cross-slope Ekman transports, buoyancy forcing, and mixing affects the energy budget in ways th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2015-12, Vol.45 (12), p.3099-3117
Hauptverfasser: Umlauf, Lars, Smyth, William D, Moum, James N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3117
container_issue 12
container_start_page 3099
container_title Journal of physical oceanography
container_volume 45
creator Umlauf, Lars
Smyth, William D
Moum, James N
description Turbulent bottom Ekman layers are among the most important energy conversion sites in the ocean. Their energetics are notoriously complex, in particular near sloping topography, where the feedback between cross-slope Ekman transports, buoyancy forcing, and mixing affects the energy budget in ways that are not well understood. Here, the authors attempt to clarify the energy pathways and different routes to mixing, using a combined theoretical and modeling approach. The analysis is based on a newly developed energy flux diagram for turbulent Ekman layers near sloping topography that allows for an exact definition of the different energy reservoirs and energy pathways. Using a second-moment turbulence model, it is shown that mixing efficiencies increase for increasing slope angle and interior stratification, but do not exceed the threshold of 5% except for very steep slopes, where the canonical value of 20% may be reached. Available potential energy generated by cross-slope advection may equal up to 70% of the energy lost to dissipation for upwelling-favorable flow, and up to 40% for downwelling-favorable flow.
doi_str_mv 10.1175/JPO-D-15-0041.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790971603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799031263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-ef051e938a6db0a1dff74ad392f097541ec6abbc5caad09e2563e07cde9c27703</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqUws0ZiYXF7rx3H9dhHeKlSGWC2XMepUpq42MmQf0-qMjEwneXTOUcfIfcIE0Qppm_vG7qiKChAihO8ICMUDCikM3FJRgCMUZ5JuCY3Me4BIEOmRmSWNy7sXFvZmPgyWfi29XWSf9WmSdamdyEmRReqZpcsOt-bxvbJPAQX21tyVZpDdHe_OSafT_nH8oWuN8-vy_ma2pTLlroSBDrFZyYrtmCwKEuZmoIrVoKSIkVnM7PdWmGNKUA5JjLuQNrCKcukBD4mj-feY_Df3TCs6ypadziYxvkuapRqKMIM-IA-_EH3vgvN8E4zqRRwZNm_1KARWZpywQZqeqZs8DEGV-pjqGoTeo2gT7714FuvNAp98q2R_wAETHEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751244352</pqid></control><display><type>article</type><title>Energetics of Bottom Ekman Layers during Buoyancy Arrest</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Umlauf, Lars ; Smyth, William D ; Moum, James N</creator><creatorcontrib>Umlauf, Lars ; Smyth, William D ; Moum, James N</creatorcontrib><description>Turbulent bottom Ekman layers are among the most important energy conversion sites in the ocean. Their energetics are notoriously complex, in particular near sloping topography, where the feedback between cross-slope Ekman transports, buoyancy forcing, and mixing affects the energy budget in ways that are not well understood. Here, the authors attempt to clarify the energy pathways and different routes to mixing, using a combined theoretical and modeling approach. The analysis is based on a newly developed energy flux diagram for turbulent Ekman layers near sloping topography that allows for an exact definition of the different energy reservoirs and energy pathways. Using a second-moment turbulence model, it is shown that mixing efficiencies increase for increasing slope angle and interior stratification, but do not exceed the threshold of 5% except for very steep slopes, where the canonical value of 20% may be reached. Available potential energy generated by cross-slope advection may equal up to 70% of the energy lost to dissipation for upwelling-favorable flow, and up to 40% for downwelling-favorable flow.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-15-0041.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advection ; Arrests ; Buoyancy ; Downwelling ; Efficiency ; Ekman layer ; Ekman layers ; Energy ; Energy budget ; Energy conversion ; Energy flux ; Energy transfer ; Equilibrium ; Geometry ; Investigations ; Marine ; Meteorology ; Ocean circulation ; Potential energy ; Reynolds number ; Slope ; Slopes ; Stratification ; Studies ; Topography ; Turbulence ; Turbulence models ; Upwelling</subject><ispartof>Journal of physical oceanography, 2015-12, Vol.45 (12), p.3099-3117</ispartof><rights>Copyright American Meteorological Society Dec 2015</rights><rights>Copyright American Meteorological Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-ef051e938a6db0a1dff74ad392f097541ec6abbc5caad09e2563e07cde9c27703</citedby><cites>FETCH-LOGICAL-c437t-ef051e938a6db0a1dff74ad392f097541ec6abbc5caad09e2563e07cde9c27703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Umlauf, Lars</creatorcontrib><creatorcontrib>Smyth, William D</creatorcontrib><creatorcontrib>Moum, James N</creatorcontrib><title>Energetics of Bottom Ekman Layers during Buoyancy Arrest</title><title>Journal of physical oceanography</title><description>Turbulent bottom Ekman layers are among the most important energy conversion sites in the ocean. Their energetics are notoriously complex, in particular near sloping topography, where the feedback between cross-slope Ekman transports, buoyancy forcing, and mixing affects the energy budget in ways that are not well understood. Here, the authors attempt to clarify the energy pathways and different routes to mixing, using a combined theoretical and modeling approach. The analysis is based on a newly developed energy flux diagram for turbulent Ekman layers near sloping topography that allows for an exact definition of the different energy reservoirs and energy pathways. Using a second-moment turbulence model, it is shown that mixing efficiencies increase for increasing slope angle and interior stratification, but do not exceed the threshold of 5% except for very steep slopes, where the canonical value of 20% may be reached. Available potential energy generated by cross-slope advection may equal up to 70% of the energy lost to dissipation for upwelling-favorable flow, and up to 40% for downwelling-favorable flow.</description><subject>Advection</subject><subject>Arrests</subject><subject>Buoyancy</subject><subject>Downwelling</subject><subject>Efficiency</subject><subject>Ekman layer</subject><subject>Ekman layers</subject><subject>Energy</subject><subject>Energy budget</subject><subject>Energy conversion</subject><subject>Energy flux</subject><subject>Energy transfer</subject><subject>Equilibrium</subject><subject>Geometry</subject><subject>Investigations</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean circulation</subject><subject>Potential energy</subject><subject>Reynolds number</subject><subject>Slope</subject><subject>Slopes</subject><subject>Stratification</subject><subject>Studies</subject><subject>Topography</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Upwelling</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDtPwzAUhS0EEqUws0ZiYXF7rx3H9dhHeKlSGWC2XMepUpq42MmQf0-qMjEwneXTOUcfIfcIE0Qppm_vG7qiKChAihO8ICMUDCikM3FJRgCMUZ5JuCY3Me4BIEOmRmSWNy7sXFvZmPgyWfi29XWSf9WmSdamdyEmRReqZpcsOt-bxvbJPAQX21tyVZpDdHe_OSafT_nH8oWuN8-vy_ma2pTLlroSBDrFZyYrtmCwKEuZmoIrVoKSIkVnM7PdWmGNKUA5JjLuQNrCKcukBD4mj-feY_Df3TCs6ypadziYxvkuapRqKMIM-IA-_EH3vgvN8E4zqRRwZNm_1KARWZpywQZqeqZs8DEGV-pjqGoTeo2gT7714FuvNAp98q2R_wAETHEp</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Umlauf, Lars</creator><creator>Smyth, William D</creator><creator>Moum, James N</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20151201</creationdate><title>Energetics of Bottom Ekman Layers during Buoyancy Arrest</title><author>Umlauf, Lars ; Smyth, William D ; Moum, James N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-ef051e938a6db0a1dff74ad392f097541ec6abbc5caad09e2563e07cde9c27703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advection</topic><topic>Arrests</topic><topic>Buoyancy</topic><topic>Downwelling</topic><topic>Efficiency</topic><topic>Ekman layer</topic><topic>Ekman layers</topic><topic>Energy</topic><topic>Energy budget</topic><topic>Energy conversion</topic><topic>Energy flux</topic><topic>Energy transfer</topic><topic>Equilibrium</topic><topic>Geometry</topic><topic>Investigations</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean circulation</topic><topic>Potential energy</topic><topic>Reynolds number</topic><topic>Slope</topic><topic>Slopes</topic><topic>Stratification</topic><topic>Studies</topic><topic>Topography</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umlauf, Lars</creatorcontrib><creatorcontrib>Smyth, William D</creatorcontrib><creatorcontrib>Moum, James N</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umlauf, Lars</au><au>Smyth, William D</au><au>Moum, James N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetics of Bottom Ekman Layers during Buoyancy Arrest</atitle><jtitle>Journal of physical oceanography</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>45</volume><issue>12</issue><spage>3099</spage><epage>3117</epage><pages>3099-3117</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>Turbulent bottom Ekman layers are among the most important energy conversion sites in the ocean. Their energetics are notoriously complex, in particular near sloping topography, where the feedback between cross-slope Ekman transports, buoyancy forcing, and mixing affects the energy budget in ways that are not well understood. Here, the authors attempt to clarify the energy pathways and different routes to mixing, using a combined theoretical and modeling approach. The analysis is based on a newly developed energy flux diagram for turbulent Ekman layers near sloping topography that allows for an exact definition of the different energy reservoirs and energy pathways. Using a second-moment turbulence model, it is shown that mixing efficiencies increase for increasing slope angle and interior stratification, but do not exceed the threshold of 5% except for very steep slopes, where the canonical value of 20% may be reached. Available potential energy generated by cross-slope advection may equal up to 70% of the energy lost to dissipation for upwelling-favorable flow, and up to 40% for downwelling-favorable flow.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-15-0041.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2015-12, Vol.45 (12), p.3099-3117
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_miscellaneous_1790971603
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Advection
Arrests
Buoyancy
Downwelling
Efficiency
Ekman layer
Ekman layers
Energy
Energy budget
Energy conversion
Energy flux
Energy transfer
Equilibrium
Geometry
Investigations
Marine
Meteorology
Ocean circulation
Potential energy
Reynolds number
Slope
Slopes
Stratification
Studies
Topography
Turbulence
Turbulence models
Upwelling
title Energetics of Bottom Ekman Layers during Buoyancy Arrest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetics%20of%20Bottom%20Ekman%20Layers%20during%20Buoyancy%20Arrest&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Umlauf,%20Lars&rft.date=2015-12-01&rft.volume=45&rft.issue=12&rft.spage=3099&rft.epage=3117&rft.pages=3099-3117&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-15-0041.1&rft_dat=%3Cproquest_cross%3E2799031263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751244352&rft_id=info:pmid/&rfr_iscdi=true