Precipitation Nowcasting with Three-Dimensional Space–Time Extrapolation of Dense and Frequent Phased-Array Weather Radar Observations

The phased-array weather radar (PAWR) is a new-generation weather radar that can make a 100-m-resolution three-dimensional (3D) volume scan every 30 s for 100 vertical levels, producing ~100 times more data than the conventional parabolic-antenna radar with a volume scan typically made every 5 min f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2016-02, Vol.31 (1), p.329-340
Hauptverfasser: Otsuka, Shigenori, Tuerhong, Gulanbaier, Kikuchi, Ryota, Kitano, Yoshikazu, Taniguchi, Yusuke, Ruiz, Juan Jose, Satoh, Shinsuke, Ushio, Tomoo, Miyoshi, Takemasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 1
container_start_page 329
container_title Weather and forecasting
container_volume 31
creator Otsuka, Shigenori
Tuerhong, Gulanbaier
Kikuchi, Ryota
Kitano, Yoshikazu
Taniguchi, Yusuke
Ruiz, Juan Jose
Satoh, Shinsuke
Ushio, Tomoo
Miyoshi, Takemasa
description The phased-array weather radar (PAWR) is a new-generation weather radar that can make a 100-m-resolution three-dimensional (3D) volume scan every 30 s for 100 vertical levels, producing ~100 times more data than the conventional parabolic-antenna radar with a volume scan typically made every 5 min for 15 scan levels. This study takes advantage of orders of magnitude more rapid and dense observations by PAWR and explores high-precision nowcasting of 3D evolution at 1-10-km scales up to several minutes, which are compared with conventional horizontal two-dimensional (2D) nowcasting typically at O(100) km scales up to 1-6 h. A new 3D precipitation extrapolation system was designed to enhance a conventional algorithm for dense and rapid PAWR volume scans. Experiments show that the 3D extrapolation successfully captured vertical motions of convective precipitation cores and outperformed 2D nowcasting with both simulated and real PAWR data.
doi_str_mv 10.1175/WAF-D-15-0063.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790968162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790968162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-c2e92f3d393dc563985b1a4154c2a9759b95c6eecad206dd5f3e25f2de7bd1423</originalsourceid><addsrcrecordid>eNpdkbFu2zAQhomiBeqmnbsS6NKFCY8UJXE04rgpEDRB4iIjcSZPtQJZUkk6abaM3fuGfZLKcaZOB9x9_-FwH2MfQR4DVObkdr4UCwFGSFnqY3jFZmCUFLLQxWs2k3WtRA2mfMvepXQnpVRG2Rn7fRXJt2ObMbdDz78NDx5Tbvsf_KHNG77aRCKxaLfUp2mOHb8Z0dPfpz-rqcfPfuWI49AdwkPDFxNHHPvAl5F-7qjP_GqDiYKYx4iP_JYwbyjyawwY-eU6Ubx_Dqf37E2DXaIPL_WIfV-erU7PxcXll6-n8wvhtVRZeEVWNTpoq4M3pba1WQMWYAqv0FbGrq3xJZHHoGQZgmk0KdOoQNU6QKH0Eft82DvGYTowZbdtk6euw56GXXJQWWnLGso9-uk_9G7YxekJe6qCQhqQ9USdHCgfh5QiNW6M7RbjowPp9mbcZMYtHBi3N-NA_wPFD4Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771405108</pqid></control><display><type>article</type><title>Precipitation Nowcasting with Three-Dimensional Space–Time Extrapolation of Dense and Frequent Phased-Array Weather Radar Observations</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Otsuka, Shigenori ; Tuerhong, Gulanbaier ; Kikuchi, Ryota ; Kitano, Yoshikazu ; Taniguchi, Yusuke ; Ruiz, Juan Jose ; Satoh, Shinsuke ; Ushio, Tomoo ; Miyoshi, Takemasa</creator><creatorcontrib>Otsuka, Shigenori ; Tuerhong, Gulanbaier ; Kikuchi, Ryota ; Kitano, Yoshikazu ; Taniguchi, Yusuke ; Ruiz, Juan Jose ; Satoh, Shinsuke ; Ushio, Tomoo ; Miyoshi, Takemasa</creatorcontrib><description>The phased-array weather radar (PAWR) is a new-generation weather radar that can make a 100-m-resolution three-dimensional (3D) volume scan every 30 s for 100 vertical levels, producing ~100 times more data than the conventional parabolic-antenna radar with a volume scan typically made every 5 min for 15 scan levels. This study takes advantage of orders of magnitude more rapid and dense observations by PAWR and explores high-precision nowcasting of 3D evolution at 1-10-km scales up to several minutes, which are compared with conventional horizontal two-dimensional (2D) nowcasting typically at O(100) km scales up to 1-6 h. A new 3D precipitation extrapolation system was designed to enhance a conventional algorithm for dense and rapid PAWR volume scans. Experiments show that the 3D extrapolation successfully captured vertical motions of convective precipitation cores and outperformed 2D nowcasting with both simulated and real PAWR data.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-15-0063.1</identifier><identifier>CODEN: WEFOE3</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Convective precipitation ; Meteorology ; Precipitation ; Radar</subject><ispartof>Weather and forecasting, 2016-02, Vol.31 (1), p.329-340</ispartof><rights>Copyright American Meteorological Society Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-c2e92f3d393dc563985b1a4154c2a9759b95c6eecad206dd5f3e25f2de7bd1423</citedby><cites>FETCH-LOGICAL-c302t-c2e92f3d393dc563985b1a4154c2a9759b95c6eecad206dd5f3e25f2de7bd1423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Otsuka, Shigenori</creatorcontrib><creatorcontrib>Tuerhong, Gulanbaier</creatorcontrib><creatorcontrib>Kikuchi, Ryota</creatorcontrib><creatorcontrib>Kitano, Yoshikazu</creatorcontrib><creatorcontrib>Taniguchi, Yusuke</creatorcontrib><creatorcontrib>Ruiz, Juan Jose</creatorcontrib><creatorcontrib>Satoh, Shinsuke</creatorcontrib><creatorcontrib>Ushio, Tomoo</creatorcontrib><creatorcontrib>Miyoshi, Takemasa</creatorcontrib><title>Precipitation Nowcasting with Three-Dimensional Space–Time Extrapolation of Dense and Frequent Phased-Array Weather Radar Observations</title><title>Weather and forecasting</title><description>The phased-array weather radar (PAWR) is a new-generation weather radar that can make a 100-m-resolution three-dimensional (3D) volume scan every 30 s for 100 vertical levels, producing ~100 times more data than the conventional parabolic-antenna radar with a volume scan typically made every 5 min for 15 scan levels. This study takes advantage of orders of magnitude more rapid and dense observations by PAWR and explores high-precision nowcasting of 3D evolution at 1-10-km scales up to several minutes, which are compared with conventional horizontal two-dimensional (2D) nowcasting typically at O(100) km scales up to 1-6 h. A new 3D precipitation extrapolation system was designed to enhance a conventional algorithm for dense and rapid PAWR volume scans. Experiments show that the 3D extrapolation successfully captured vertical motions of convective precipitation cores and outperformed 2D nowcasting with both simulated and real PAWR data.</description><subject>Algorithms</subject><subject>Convective precipitation</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Radar</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkbFu2zAQhomiBeqmnbsS6NKFCY8UJXE04rgpEDRB4iIjcSZPtQJZUkk6abaM3fuGfZLKcaZOB9x9_-FwH2MfQR4DVObkdr4UCwFGSFnqY3jFZmCUFLLQxWs2k3WtRA2mfMvepXQnpVRG2Rn7fRXJt2ObMbdDz78NDx5Tbvsf_KHNG77aRCKxaLfUp2mOHb8Z0dPfpz-rqcfPfuWI49AdwkPDFxNHHPvAl5F-7qjP_GqDiYKYx4iP_JYwbyjyawwY-eU6Ubx_Dqf37E2DXaIPL_WIfV-erU7PxcXll6-n8wvhtVRZeEVWNTpoq4M3pba1WQMWYAqv0FbGrq3xJZHHoGQZgmk0KdOoQNU6QKH0Eft82DvGYTowZbdtk6euw56GXXJQWWnLGso9-uk_9G7YxekJe6qCQhqQ9USdHCgfh5QiNW6M7RbjowPp9mbcZMYtHBi3N-NA_wPFD4Qw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Otsuka, Shigenori</creator><creator>Tuerhong, Gulanbaier</creator><creator>Kikuchi, Ryota</creator><creator>Kitano, Yoshikazu</creator><creator>Taniguchi, Yusuke</creator><creator>Ruiz, Juan Jose</creator><creator>Satoh, Shinsuke</creator><creator>Ushio, Tomoo</creator><creator>Miyoshi, Takemasa</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20160201</creationdate><title>Precipitation Nowcasting with Three-Dimensional Space–Time Extrapolation of Dense and Frequent Phased-Array Weather Radar Observations</title><author>Otsuka, Shigenori ; Tuerhong, Gulanbaier ; Kikuchi, Ryota ; Kitano, Yoshikazu ; Taniguchi, Yusuke ; Ruiz, Juan Jose ; Satoh, Shinsuke ; Ushio, Tomoo ; Miyoshi, Takemasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-c2e92f3d393dc563985b1a4154c2a9759b95c6eecad206dd5f3e25f2de7bd1423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Convective precipitation</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otsuka, Shigenori</creatorcontrib><creatorcontrib>Tuerhong, Gulanbaier</creatorcontrib><creatorcontrib>Kikuchi, Ryota</creatorcontrib><creatorcontrib>Kitano, Yoshikazu</creatorcontrib><creatorcontrib>Taniguchi, Yusuke</creatorcontrib><creatorcontrib>Ruiz, Juan Jose</creatorcontrib><creatorcontrib>Satoh, Shinsuke</creatorcontrib><creatorcontrib>Ushio, Tomoo</creatorcontrib><creatorcontrib>Miyoshi, Takemasa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career &amp; Technical Education Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otsuka, Shigenori</au><au>Tuerhong, Gulanbaier</au><au>Kikuchi, Ryota</au><au>Kitano, Yoshikazu</au><au>Taniguchi, Yusuke</au><au>Ruiz, Juan Jose</au><au>Satoh, Shinsuke</au><au>Ushio, Tomoo</au><au>Miyoshi, Takemasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation Nowcasting with Three-Dimensional Space–Time Extrapolation of Dense and Frequent Phased-Array Weather Radar Observations</atitle><jtitle>Weather and forecasting</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>329</spage><epage>340</epage><pages>329-340</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><coden>WEFOE3</coden><abstract>The phased-array weather radar (PAWR) is a new-generation weather radar that can make a 100-m-resolution three-dimensional (3D) volume scan every 30 s for 100 vertical levels, producing ~100 times more data than the conventional parabolic-antenna radar with a volume scan typically made every 5 min for 15 scan levels. This study takes advantage of orders of magnitude more rapid and dense observations by PAWR and explores high-precision nowcasting of 3D evolution at 1-10-km scales up to several minutes, which are compared with conventional horizontal two-dimensional (2D) nowcasting typically at O(100) km scales up to 1-6 h. A new 3D precipitation extrapolation system was designed to enhance a conventional algorithm for dense and rapid PAWR volume scans. Experiments show that the 3D extrapolation successfully captured vertical motions of convective precipitation cores and outperformed 2D nowcasting with both simulated and real PAWR data.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-15-0063.1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0882-8156
ispartof Weather and forecasting, 2016-02, Vol.31 (1), p.329-340
issn 0882-8156
1520-0434
language eng
recordid cdi_proquest_miscellaneous_1790968162
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Convective precipitation
Meteorology
Precipitation
Radar
title Precipitation Nowcasting with Three-Dimensional Space–Time Extrapolation of Dense and Frequent Phased-Array Weather Radar Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20Nowcasting%20with%20Three-Dimensional%20Space%E2%80%93Time%20Extrapolation%20of%20Dense%20and%20Frequent%20Phased-Array%20Weather%20Radar%20Observations&rft.jtitle=Weather%20and%20forecasting&rft.au=Otsuka,%20Shigenori&rft.date=2016-02-01&rft.volume=31&rft.issue=1&rft.spage=329&rft.epage=340&rft.pages=329-340&rft.issn=0882-8156&rft.eissn=1520-0434&rft.coden=WEFOE3&rft_id=info:doi/10.1175/WAF-D-15-0063.1&rft_dat=%3Cproquest_cross%3E1790968162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771405108&rft_id=info:pmid/&rfr_iscdi=true