Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study
The present study describes grafting of zinc oxide (ZnO) nanoparticles with polyethyleneimine (PEI) followed by modification with glutraldehyde used as the bridge for binding the enzyme to support. The prepared nanocomposites were then characterized using Fourier transform infrared spectroscopy, the...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2016-04, Vol.178 (8), p.1630-1651 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1651 |
---|---|
container_issue | 8 |
container_start_page | 1630 |
container_title | Applied biochemistry and biotechnology |
container_volume | 178 |
creator | Patel, Vrutika Shah, Chandani Deshpande, Milind Madamwar, Datta |
description | The present study describes grafting of zinc oxide (ZnO) nanoparticles with polyethyleneimine (PEI) followed by modification with glutraldehyde used as the bridge for binding the enzyme to support. The prepared nanocomposites were then characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy, utilized for synthesis of geranyl acetate in n-hexane. Among all the three prepared nanocomposites (ZnO + PEI, ZnO + PEI + SAA, ZnO + PEI + GLU),
Candida rugosa
lipase immobilized on ZnO-PEI-GLU was found to be best for higher ester synthesis. The operating conditions that maximized geranyl acetate resulted in the highest yield of 94 % in 6 h, molar ratio of 0.1:0.4 M (geraniol/vinyl acetate) in the presence of n-hexane as reaction medium. Various kinetic parameters such as
V
max
,
K
i
(
G
)
,
K
m
(
G
)
, and
K
m
(
VA
)
were determined using nonlinear regression analysis for order bi–bi mechanism. The kinetic study showed that reaction followed order bi–bi mechanism with inhibition by geraniol. Activation energy (
E
a
) was found to be lower for immobilized lipase (12.31 kJ mol
−1
) than crude lipase (19.04 kJ mol
−1
) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 2.23-fold increased catalytic activity than crude lipase and recycled 20 times. The studies revealed in this work showed a promising perspective of using low-cost nanobiocatalysts to overcome the well-known drawbacks of the chemical-catalyzed route. |
doi_str_mv | 10.1007/s12010-015-1972-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790967986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4046307651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-14e3f2e26647e1c0ba064dce8b56b2a63d99560b09b3ddf65902d0502061fd253</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEoqXwAWyQJTYsCDw7iR2zG6q2VIyYxQALNpFjvxRXiR1sp2L4NL4OD1MQQkJiZcv33Gtb7xbFYwovKIB4GSkDCiXQpqRSsFLeKY5p08gSmKR3i2NgoioZa-VR8SDGawDK2kbcL44YF7Vksjouvn-yTpPNV2uQvFPOzyokq0eMZLvMsw8JDVnbWUUkl9PkezvabypZ78jgA3ltfQrKxbyfDqfWkU24Us5qsvXjDboUX5EVOVfajki2O5c-Y7SR-IFcYLbuRrLSmFTC5-RsGFCnvbSZs5bsDZKPKljV79-jnCFvrcO0j06L2T0s7g1qjPjodj0pPpyfvT99U643F5enq3Wp65qlktZYDQwZ57VAqqFXwGujse0b3jPFKyNlw6EH2VfGDLyRwAw0wIDTwbCmOimeHXLn4L8sGFM32ahxHJVDv8SOCgmSC9ny_0BbUQsmWsjo07_Qa78Elz_yk4KK5xlmih4oHXyMAYduDnZSYddR6PYd6A4d6HIHun0HOpk9T26Tl35C89vxa-gZYAcgZsldYfjj6n-m_gB0kb32</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787036291</pqid></control><display><type>article</type><title>Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Patel, Vrutika ; Shah, Chandani ; Deshpande, Milind ; Madamwar, Datta</creator><creatorcontrib>Patel, Vrutika ; Shah, Chandani ; Deshpande, Milind ; Madamwar, Datta</creatorcontrib><description>The present study describes grafting of zinc oxide (ZnO) nanoparticles with polyethyleneimine (PEI) followed by modification with glutraldehyde used as the bridge for binding the enzyme to support. The prepared nanocomposites were then characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy, utilized for synthesis of geranyl acetate in n-hexane. Among all the three prepared nanocomposites (ZnO + PEI, ZnO + PEI + SAA, ZnO + PEI + GLU),
Candida rugosa
lipase immobilized on ZnO-PEI-GLU was found to be best for higher ester synthesis. The operating conditions that maximized geranyl acetate resulted in the highest yield of 94 % in 6 h, molar ratio of 0.1:0.4 M (geraniol/vinyl acetate) in the presence of n-hexane as reaction medium. Various kinetic parameters such as
V
max
,
K
i
(
G
)
,
K
m
(
G
)
, and
K
m
(
VA
)
were determined using nonlinear regression analysis for order bi–bi mechanism. The kinetic study showed that reaction followed order bi–bi mechanism with inhibition by geraniol. Activation energy (
E
a
) was found to be lower for immobilized lipase (12.31 kJ mol
−1
) than crude lipase (19.04 kJ mol
−1
) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 2.23-fold increased catalytic activity than crude lipase and recycled 20 times. The studies revealed in this work showed a promising perspective of using low-cost nanobiocatalysts to overcome the well-known drawbacks of the chemical-catalyzed route.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-015-1972-9</identifier><identifier>PMID: 26749293</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetates - chemical synthesis ; Acetates - chemistry ; Biochemistry ; Biotechnology ; Biotransformation ; Candida - enzymology ; Candida rugosa ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Enzymes - chemistry ; Enzymes, Immobilized - chemistry ; Fourier transforms ; Infrared spectroscopy ; Kinetics ; Lipase - chemistry ; Nanoparticles ; Nanoparticles - chemistry ; Organic solvents ; Regression analysis ; Solvents ; Solvents - chemistry ; Studies ; Terpenes - chemical synthesis ; Terpenes - chemistry ; Zinc Oxide - chemistry ; Zinc oxides</subject><ispartof>Applied biochemistry and biotechnology, 2016-04, Vol.178 (8), p.1630-1651</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-14e3f2e26647e1c0ba064dce8b56b2a63d99560b09b3ddf65902d0502061fd253</citedby><cites>FETCH-LOGICAL-c442t-14e3f2e26647e1c0ba064dce8b56b2a63d99560b09b3ddf65902d0502061fd253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-015-1972-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-015-1972-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26749293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Vrutika</creatorcontrib><creatorcontrib>Shah, Chandani</creatorcontrib><creatorcontrib>Deshpande, Milind</creatorcontrib><creatorcontrib>Madamwar, Datta</creatorcontrib><title>Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The present study describes grafting of zinc oxide (ZnO) nanoparticles with polyethyleneimine (PEI) followed by modification with glutraldehyde used as the bridge for binding the enzyme to support. The prepared nanocomposites were then characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy, utilized for synthesis of geranyl acetate in n-hexane. Among all the three prepared nanocomposites (ZnO + PEI, ZnO + PEI + SAA, ZnO + PEI + GLU),
Candida rugosa
lipase immobilized on ZnO-PEI-GLU was found to be best for higher ester synthesis. The operating conditions that maximized geranyl acetate resulted in the highest yield of 94 % in 6 h, molar ratio of 0.1:0.4 M (geraniol/vinyl acetate) in the presence of n-hexane as reaction medium. Various kinetic parameters such as
V
max
,
K
i
(
G
)
,
K
m
(
G
)
, and
K
m
(
VA
)
were determined using nonlinear regression analysis for order bi–bi mechanism. The kinetic study showed that reaction followed order bi–bi mechanism with inhibition by geraniol. Activation energy (
E
a
) was found to be lower for immobilized lipase (12.31 kJ mol
−1
) than crude lipase (19.04 kJ mol
−1
) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 2.23-fold increased catalytic activity than crude lipase and recycled 20 times. The studies revealed in this work showed a promising perspective of using low-cost nanobiocatalysts to overcome the well-known drawbacks of the chemical-catalyzed route.</description><subject>Acetates - chemical synthesis</subject><subject>Acetates - chemistry</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Biotransformation</subject><subject>Candida - enzymology</subject><subject>Candida rugosa</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Enzymes - chemistry</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Kinetics</subject><subject>Lipase - chemistry</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Organic solvents</subject><subject>Regression analysis</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Studies</subject><subject>Terpenes - chemical synthesis</subject><subject>Terpenes - chemistry</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc oxides</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksFu1DAURSMEoqXwAWyQJTYsCDw7iR2zG6q2VIyYxQALNpFjvxRXiR1sp2L4NL4OD1MQQkJiZcv33Gtb7xbFYwovKIB4GSkDCiXQpqRSsFLeKY5p08gSmKR3i2NgoioZa-VR8SDGawDK2kbcL44YF7Vksjouvn-yTpPNV2uQvFPOzyokq0eMZLvMsw8JDVnbWUUkl9PkezvabypZ78jgA3ltfQrKxbyfDqfWkU24Us5qsvXjDboUX5EVOVfajki2O5c-Y7SR-IFcYLbuRrLSmFTC5-RsGFCnvbSZs5bsDZKPKljV79-jnCFvrcO0j06L2T0s7g1qjPjodj0pPpyfvT99U643F5enq3Wp65qlktZYDQwZ57VAqqFXwGujse0b3jPFKyNlw6EH2VfGDLyRwAw0wIDTwbCmOimeHXLn4L8sGFM32ahxHJVDv8SOCgmSC9ny_0BbUQsmWsjo07_Qa78Elz_yk4KK5xlmih4oHXyMAYduDnZSYddR6PYd6A4d6HIHun0HOpk9T26Tl35C89vxa-gZYAcgZsldYfjj6n-m_gB0kb32</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Patel, Vrutika</creator><creator>Shah, Chandani</creator><creator>Deshpande, Milind</creator><creator>Madamwar, Datta</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160401</creationdate><title>Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study</title><author>Patel, Vrutika ; Shah, Chandani ; Deshpande, Milind ; Madamwar, Datta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-14e3f2e26647e1c0ba064dce8b56b2a63d99560b09b3ddf65902d0502061fd253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetates - chemical synthesis</topic><topic>Acetates - chemistry</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Biotransformation</topic><topic>Candida - enzymology</topic><topic>Candida rugosa</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Enzymes - chemistry</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Kinetics</topic><topic>Lipase - chemistry</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Organic solvents</topic><topic>Regression analysis</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Studies</topic><topic>Terpenes - chemical synthesis</topic><topic>Terpenes - chemistry</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Vrutika</creatorcontrib><creatorcontrib>Shah, Chandani</creatorcontrib><creatorcontrib>Deshpande, Milind</creatorcontrib><creatorcontrib>Madamwar, Datta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Vrutika</au><au>Shah, Chandani</au><au>Deshpande, Milind</au><au>Madamwar, Datta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>178</volume><issue>8</issue><spage>1630</spage><epage>1651</epage><pages>1630-1651</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The present study describes grafting of zinc oxide (ZnO) nanoparticles with polyethyleneimine (PEI) followed by modification with glutraldehyde used as the bridge for binding the enzyme to support. The prepared nanocomposites were then characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy, utilized for synthesis of geranyl acetate in n-hexane. Among all the three prepared nanocomposites (ZnO + PEI, ZnO + PEI + SAA, ZnO + PEI + GLU),
Candida rugosa
lipase immobilized on ZnO-PEI-GLU was found to be best for higher ester synthesis. The operating conditions that maximized geranyl acetate resulted in the highest yield of 94 % in 6 h, molar ratio of 0.1:0.4 M (geraniol/vinyl acetate) in the presence of n-hexane as reaction medium. Various kinetic parameters such as
V
max
,
K
i
(
G
)
,
K
m
(
G
)
, and
K
m
(
VA
)
were determined using nonlinear regression analysis for order bi–bi mechanism. The kinetic study showed that reaction followed order bi–bi mechanism with inhibition by geraniol. Activation energy (
E
a
) was found to be lower for immobilized lipase (12.31 kJ mol
−1
) than crude lipase (19.04 kJ mol
−1
) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 2.23-fold increased catalytic activity than crude lipase and recycled 20 times. The studies revealed in this work showed a promising perspective of using low-cost nanobiocatalysts to overcome the well-known drawbacks of the chemical-catalyzed route.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26749293</pmid><doi>10.1007/s12010-015-1972-9</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2016-04, Vol.178 (8), p.1630-1651 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790967986 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acetates - chemical synthesis Acetates - chemistry Biochemistry Biotechnology Biotransformation Candida - enzymology Candida rugosa Catalysis Chemistry Chemistry and Materials Science Enzymes - chemistry Enzymes, Immobilized - chemistry Fourier transforms Infrared spectroscopy Kinetics Lipase - chemistry Nanoparticles Nanoparticles - chemistry Organic solvents Regression analysis Solvents Solvents - chemistry Studies Terpenes - chemical synthesis Terpenes - chemistry Zinc Oxide - chemistry Zinc oxides |
title | Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20Oxide%20Nanoparticles%20Supported%20Lipase%20Immobilization%20for%20Biotransformation%20in%20Organic%20Solvents:%20A%20Facile%20Synthesis%20of%20Geranyl%20Acetate,%20Effect%20of%20Operative%20Variables%20and%20Kinetic%20Study&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Patel,%20Vrutika&rft.date=2016-04-01&rft.volume=178&rft.issue=8&rft.spage=1630&rft.epage=1651&rft.pages=1630-1651&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-015-1972-9&rft_dat=%3Cproquest_cross%3E4046307651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787036291&rft_id=info:pmid/26749293&rfr_iscdi=true |